Start to Finish Guide
to MOF Editing

The Definitive Guide to Systems Management Server Hardware
Inventory Customization

Jeftery J. Gilbert

I'would like to dedicate this book to
my beautiful wife Christine who
always encourages me to believe in myself.

START TO FINISH GUIDE TO MOF EDITING

(O Nl I = R =10 1O N I O AN 1Y, | 1
WWHAT ISWWIMI? oottt ettt e e e e e st e e e e e e s s e bt b et e s e s s s e b bbb e et s e e esesabbbaaseeeessssbbeaaeeeas 1
HoW DOES HARDWARE INVENTORY WORK? .uuiiiiiiiiiiiiiiii ettt e bbbttt e e st b b as e e s s s s sabbaaa s e s s s s saabbanane s 3
WWHAT ARE IMOF FILES? oottt e e e e e bbb e e e s e e s s e bbb b e e e s e e e s e s bt bbb e e e e s s s sbbbebaeeeas 6
CHAPTER SUMMARY L.utttiiiiiiiiiitittiet s e st seitbabasssesssasabsbasssassssssbtbasssasssssasbbabasasesssas b b e besssesssabbbbesesasssassbbbanssessaasns 9

CHAPTER 2: INTRODUCING THE SMS_DEF.MOFccoiiiiiiieeee e 11
THE MENU TO HARDWARE INVENTORYuutttiiiiieiiiiititieeseessieiitbeessesssessstbasssesssssatbssssesssssssssssssssesssssssssssess 11
A LOOK INSIDE THE SIMS _DEF.MOF.....iittiitiiiiiesiitesiesssstesieessseessbeessbessstessssesssessssessssessssesssessssessnsessnsens 13
[0 1Y 27y 10 OO 13
CLASS LEVEL REPORTING PROPERTIES......cttieeiitttieeetetesiteeeesettesesastessssssessssssesssssssssssssessssssessesssensssssenenns 14
FIELD LEVEL REPORTING PROPERTIESiiiiiiiiitttttieeesiiiitrsseeeeessseitssssessesssassssssessesssasssssssssesssnssssesesesssasssnes 14
SPECIAL ORDERSuuttttiiieeiiiiittittteeesss it bettsasssssabbetetasesssasbbasaeesesssasbbebeeeseessassbebaessesssesbbebeessesssesabbenasassssies 16
CHAPTER SUMMARY .utttiiieeiiiitttiteeesssietbettsasssssasbbsstsasesssasbbesasasesssasbebaeesesssassbebaessesssassbebesssesssessssbenssesssaies 21

CHAPTER 3: SMS_DEF.MOF SYNTAX ..ottt sr ettt ste et te s et e staesae e tesnaesneesseesaeeananensnes 23
COMPILING WITH MOFCOMP ...ttt e e e e e s s s e bbb e e e e e s s s e bbb aaaeaeeeeaes 23
(O00] Y 1Y/ 1 =N RS TP OTTRR 25
DIEFINITIONS L. tttttiit e et i ieitttr et e e et s et b e et e e e s e e iab b e e e eeeees s s bbb beeeseessas bbb baeeseesaas bbb baaeseeesesab b b e baeesesssabbbbeeeseessasnrres 27
NN AMESPACES ... tttttiitt et s iiitbtr ittt e e et s e it b et e e et e s iia b b e aeeeeeessaabbebeeeseessaabbebaesseessaab b baasseessasabbbeaeeeseessaabbbbaeeseessasneres 27
DIATA CLASSES 1uuttttiiiieiiiiittttiitte et iaitbretee s s st iiabbareeeeesssab b b beeeseessabbbbaesseessaab b baaeeeesss s bt besseeseessasbbbbeeesesssaaneres 28
REPORTING CLASSES ... vviieiitit i e eteie e s ettt e e ettt e e e ettee e s st e e e et aeeesbtesessabeeeeasbbeseaabaaeeesabaeessbbeeesasteseesnbenessssrenenas 29
NS 17 3 =S 29
g0 V] 5] = T 30
SMS_DEF.MOF STRUCTURE RECAPoitiitiiiitisiiiieie sttt sttt sr bbb sn et 30
BASIC MOF MODIFICATION STEPS ..utttiiiiiiiiiittitiiie e e s s ieitteteeesesssessatteessesssasabbbatssasssasasbbasssasessssbbrbesesesssasrrres 31
CHAPTER SUMMARY .utttiiieiiieittttitteesssietbettsasssssassbssssesesssassbssasasesssasbesesesesssassbebaessesssessbtbesssesssssssbbenssessssies 36

CHAPTER 4: INTRODUCTION TO WMI MANIPULATIONoociiiie e 37
THE BASIC STRUCTURE OF WIMI ..ottt ettt et bbb a e e e sabbaaa e 37
VY DN N O I N1 =TT 39
LGS =110 1 ORIt 40
USING TOOLS TO ACCESS WML ...ttt ettt a e e e e s e e bbb b e e e e e e s seabares 41
VA S Y I S 41
(0117 S 10T 0] T 2 46
SCRIPTOMATIC VERSION 2. .uveeeeiettiee e ettt e ettee e s etteeeeettee e s sabeeesstbesesastessessbeseeasbbesesastessssabeeesasbeesessenessssrenenas 47
WMI CODE CREATOR VERSION L..ouiiiiiiiiiiitiiii ettt e e ettt et s e e s s ettt et e s e s e s s saab e e e s e s s s e saabbaaeeasesssnbbeaeneses 50
WM MANIPULATION IMETHODS ..vvvtiiiieiiititiiee e e s sttt e e e s s s ettt s s e e s s asabtbasssasssssabbbesasasssssbbbabeeesesssasbbesaeeses 52
CHAPTER SUMMARY .utttiiieeiieittititeeesssietbetesasssssasbbssssasesssassbasasasesssasbesesesesssassbebaessesssessbebesssessssssstbenssesssaies 55

CHAPTER 5: REPORTING ON AN EXISTING CLASS ...t 56
STRUCTURE OF A REPORTING CLASSuttttiiieiiiiiiiittiie e e s s siibbbeee s e s s sasbbabas e s e s s saabtbasssesssessbbbasssessssssbbbanasesssses 58
CHAPTER SUMMARY .ttttiiiieiiiiittttitieesssiibbattsasssssasbbssssesesssassbssaessesssasbbebasesesssasbbebaessesssessbbbaassesssesbbbanasasssases 68

CHAPTER 6: REGISTRY PROPERTY PROVIDER ...ttt 70
WHEN TO USE THE REGISTRY PROPERTY PROVIDER ...vviiiiiiiiiiiiiiiie e iiiitiies e s ssitbess s e s e s s sibbanes s s e s sabbaneeee s 70
CHAPTER SUMMARY L.utttiiieiiiiiittititeeesssiitbssesssessiasbsssssssesssasssssasssesssasssssssssesssasssssssssesssasssssesseessssisssrssseessnnins 79

CHAPTER 7: THE REGISTRY INSTANCE PROVIDERoooiiiieicee et 80
WHEN TO USE THE REGISTRY INSTANCE PROVIDEReiiiiitiieeiitiiieeetee e eteee e s stveessetee e s sveeeessnbeeessnaasessnnenas 80

START TO FINISH GUIDE TO MOF EDITING

CHAPTER SUMMARY .utttiiieeiiiitttiteeesssietbettsasssssasbbsstsasesssasbbesasasesssasbebaeesesssassbebaessesssassbebesssesssessssbenssesssaies 87
CHAPTER 8: USING THE VIEW PROVIDER ...ttt 88
ACCESSING NAMESPACES OTHER THAN ROOTACIIMV 2 ...ttt ettt ettt s 88
USING WQL QUERIES TO FILTER WMI INFORMATIONvviiiiieiiitesieesireesteesveesiesssnessnaesssnessnsessssessnnesssnas 95
CHAPTER SUMMARY .ttttiiiiiiiiittttitteeessiitbbatesesssssasbbssssasesssasbbssasssesssassbebasesesssabbabaessasssessbbbaessesssssbbbaaasesssases 96
CHAPTER 9: STATIC HARDWARE INVENTORY EXTENSIONS ...t 97
STATIC MO FILES .. ttttiiiii ittt e e e s e e e e s e et e e b e b e e e s e e s e e bbb b e e e eeesse bbb b e eeeesssesbbbaeeeeeeeases 97
NOIDMIF AND IDMIF FILES IN GENERAL .. .utttiiiiiiiiiiititiiee s e e seititties s e e s sssasbbassssssssssbbssssesssssssbsssssssesssassssnes 99
L@ T AV, T =R 101
0 o =R 104
CHAPTER SUMMARYititie ittt e s etteee s ettt s e setaessssatesssastessssbasassasbesesassessessbeeeesssbesesastessesnbeeesasbesssasressssrenas 106
CHAPTER 10: SCRIPTED HARDWARE INVENTORY EXTENSIONS ..., 107
STATIC FILE SCRIPTED EXTENSIONSuuttttiiiieeiiiiittitiiieeessiitbeteeesesssessssesssesssasssssaessesssesssbbssssessssssssraseeeses 107
SCRIPTS THAT WRITE DIRECTLY TOWMI .ottt 117
CHAPTER SUMMARY .utttiiiiiiiiiiititiiets e et seisbbbeetsassssssstbssssasassssbbasseasesssasbbebaseseessasbbbbaeesesssessbbbbaseessssssbbaaaeesas 119
CHAPTER 11: IT'SBETTER TO TEST NOW THAN BE TESTY LATERcoiveieeeeeeee 120
VERIFY THE MOF SYNTAX WITH MOFCOMP........co oottt 122
COMPILE THE MOF ON A TEST IMACHINE ..1vviiiiiiiiititii ettt etbbre e e e s st e s e e s s s e saabbaae e e s s s s sabbanaeeeas 125
USE WBEMTEST TO CHECK FOR THE CLASS ..uuttiiiiiiiiiiitiiiiie e s iibirre s s e st ssibbrree s s e s s sssastbasssesssssastbasssesssnns 126
INITIATE A HARDWARE INVENTORYcuviiiiiteieesitteeeeeteeeesaeeessstsesesastasssssaeesssssesssassessesnssessssssenessssensesnnes 128
VERIFY THE HARDWARE INVENTORY PROCESSoeeiiitiiieiitieeesiteeeeeitieeesestee e s saveessstvesssnssesessnbenessnreesesnes 129
VERIFY THE DATA ON THE SIMS SITE SERVERuutiiiitiiieiitee s iteeeeette e e setee e s sveeasstaesssnsteeessnbenessraeeesnes 130
CHAPTER SUMMARY .etttiiitieesietitttitt e et sessbtbeessesssesatsatssasssssastbasaeasesssasbbebeeeseessassbbbaessesssessbbbesseesssssssbbasaness 132
CHAPTER 12: PULLING THE TRIGGER.oi ittt sttt et s 133
BACK UP THE ORIGINAL SMS_DEF.MOF ..ottt sttt sn e an et 133
REPLACE THE ORIGINAL SMS_DEF.MOF ON THE SITE SERVERcccttitieiiiieiiiesieesineesseesineesinessinesssneanes 133
UPDATE THE SITE HIERARCHY .ottt ettt e e st a e e s e e s s bbb b e e e s e s s s bbb b e e e s e e s s e bbb baaesaesneaes 133
SMS_DEF.MOF UPDATES: BEHIND THE SCENES.....cctttiititiititaiteessieeessesssiesassessssessssessssessssessssessssessssessnsenas 134
SMS_DEF.MOF BACK UPS: GOOD AND BADcccuiiiiiiiiiiii ittt st sne s 135
USING A MINIEIMIOF ..ttt s et e e e e et s b bbb e e e e e e s s e b bbb e e e s e e s sasbbbbeeeseesaaes 136
CHAPTER SUMMARY L.utttiiiiieeiieititieesse et saiitbesssesssasistsssssessssiastbsssessessiasssssssssesssasssssesssesssssstbssseesessisssrassesses 137
CHAPTER 13: CLEANING UP ..ottt ettt ettt e st a e s et n e s sban e e erbae s 138
CLEAN UP THE SMS_DEF.MOF ON THE SITE SERVERceitteitieiteieieesseesteesteesseessesssesseessessseessesssnsssssneesnes 139
REMOVE THE UNNECESSARY WMI CLASSES FROM YOUR CLIENTS ..iiiiiiiiiitiiiiiee e s siiieie e e e s s sibirieseeesssanns 139
REMOVE THE CLASS DATA FROM THE DATABASEci ittt ettt ettt e e st e ee s e s s s e sastbaansaesseas 141
DL R ..ttt ettt ettt ettt et e e oottt e e ettt e e e ———ee et b —ee e e ——te e i ——ee et teeeea bttt e e ——ee s i beeeea bttt e s atee s i beneeanreaeeias 141
SMS EXPERT’S SITE SWEEPER UTILITY wuttttiiiiiiiiiiititiiie e sttt e e s st bbbe e e s e s s s abbbbaas s e s s s e sasbbaaasessssssbbanaeesas 146
CHAPTER SUMMARY .utttiiiiiiiiiiititiiets e et seisbbbeetsassssssstbssssasassssbbasseasesssasbbebaseseessasbbbbaeesesssessbbbbaseessssssbbaaaeesas 149
CHAPTER 14: TROUBLESHOOTING AND TIPS ...ttt 150
0 CI 1YY T RO 150
MOF EDITING ERRORS .. .utttiiiiiiiiiiiitii ittt e sttt e e e s et eaab e e e e e e s s sa b b e bt e e e e e s sab bbb e e e e e st saabbbbaesseessaabares 155
MOFCOMP ERRORScooiittiiii ittt ettt e ettt sttt e e s sttt e e s e bt e s e s bte e e s s bb e e e s et b e s e sbbae s s sabeeesssbbesesssbassesabaneessbbaneaas 157
SOQL DATABASE ERRORSccviiiitieeitie ettt e ittt e e stte et eestee s st e e ntee e tee e be e e steeabee s teeenaeesteesnbeesteeanbeeeteeanrees 158
TROUBLESHOOTING WM.ttt ettt e ettt e et e e e e bt e e s s bt e e e sabbe s e ebteeessabeeessnraenesnnes 159

START TO FINISH GUIDE TO MOF EDITING

MVIMIIDIAG. ...ttt ettt ettt e s e ettt e e ettt e e s ba e e e s sa bt e e s eatae s e sabeeeeseb bt e e sassaeeesabeea e s b beeesaataesesabeeeesbbeeesasranessares 162
SOME TIPS AND OTHER SILLY IMOF TRICKS.....iiiiitttiiiee ettt ettt e e e s et e s s e s s s e st b aae e e e s s s sabbaaaeee s 162
CREATE CUSTOM REMINDERS ...vttiiiiiiiiiitittiii e e s s eiib bttt e s e s s st bbb e e e s e s s saabbbbas s s e s s s asbbbbaaesesssesabbbbaseesessssbbaaaeesas 162
2T == o oY N] V1 1 [OOSR 163
BYPASS IMOFCOMP ...ttt e et e e e s et b b e b e e e e s s e s b b bbb e e e s s e s sbb b e e e e e e e s s sabbeees 164
THEMINHMIONSTERIMIOF ...ttt et e e e e e s s bbb e e e e e et s e bbb b e e e s e e s s e bbb b e e e e e e s s e ibbbbeaeeeeesssaabbeees 165
IMORE TIPS AND TRICKS. ..uttttiiiiiiiiiititiiitie et ieitttrees e e et s ssbb bt e eeessasabbbeaeeeeesssbbbabeeesesssaabbabbeesesssasbbbbaesseessasreres 166
CHAPTER SUMMARY L.utttiiiiietiiiititties e e et saistbeessesssasstbasssesesssastbssssssesssasssbesssesssassstbesssesssesssbbssseesesssssbbassesss 168
CHAPTER 15: MOF EDITING IN 15 MINUTES.c oottt sttt 170
INTRODUCING THE SIMS_DEF.MOFttiitiueeiieesteestteteestesseesseessaesseesteasesasessssessseseensesssessenssesssesssnsnsesnessnes 170
WINDOWS MANAGEMENT INSTRUMENTATION ...coiiiutrritieeeieiittrreeeeeessiintsrseeesesssassssseessesssnssssssessesssnsssssseess 171
HARDWARE INVENTORY PROCESS ...uviiiiiiiiiititiiiiieessesitteetseessesbtbestsessssssbbasssasesssassbasssesesssasssssssssesssassssnes 172
1Y [T n) [e 1 [0 1Y/ (O TR 173
REPORTING ON AN EXISTING DATA CLASS ...ttt ittt ettt e e st aa e s e s s s s saabbaneeaesaeas 174
REGISTRY PROVIDERS.....ciiiitttiiiiie et iiibttii st e e s s et ee e s e e s s e st b e e e s e e e s s sa bbbt e e e s eessab b bbb e e e s e s s sabbbbaeesesssasbbbbenssaeseeses 175
THE VIEW PROVIDER ...uutttiiiiie ittt e e e s ettt bttt s e e s s e st b att s e s s s e sabbbaaasasssssasbbabasaeesssaabbabeeesesssabbbbeeesessssbbabaeesas 178
STATIC HARDWARE INVENTORY EXTENSIONSccutttiiiiiiiiiiiiriiieeeesieititieesseessssiasbeessesssesstbsssessssssssssssessns 179
SCRIPTED HARDWARE INVENTORY EXTENSIONS . .uttviiieiiiiiiiiiiiieeeesiiiitieesseessssissbeessessssssssbsssessssssssssssessas 181
(000] Y Y1 =1 N1 ST ST PPR 182
COMPILING THE IMIOF ...ttt et e e e ettt e s e bt e e e s sab e e e s eabae e e sabaeeessabaeessnbeeeesnreeas 183
DISTRIBUTING IMOF UPDATES . ..ueeiiiittiieeeetie e e sttee e s sttt e s ettt e e eeateaessabeeesstaesesesaessssaseeesssbesesastesessbeneesasrenesas 184
CHAPTER SUMMARYititie ittt e s etteee s ettt s e setaessssatesssastessssbasassasbesesassessessbeeeesssbesesastessesnbeeesasbesssasressssrenas 185

START TO FINISH GUIDE TO MOF EDITING

Foreword

Hardware inventory sometimes seems to me to be a "forgotten" feature of SMS. It can be argued
that the big gun functionality of SMS lies in its software distribution and software update ability.
Certainly there is a lot of discussion around distribution and update, and certainly a greater
amount of support. Nevertheless, hardware inventory is still a workhorse feature of SMS. With it
you can collect a wealth of information about the computers you manage with SMS, especially if
you take the time and effort to learn how to customize it. Interestingly, as Jeff points out in his
introduction, hardware inventory customization is indeed a mysterious world. With the demise of
the SMS Resource Kit and the MOF Editor, content about how to customize hardware inventory
became harder to find. Community forums like mylTforum and third party developers like SMS
Expert provide a valuable source of field experience to be sure, but, speaking as an author, there is
nothing like a good book to curl up with in front of that SMS Administrator's Console.

Jetf Gilbert has mined several excellent resources, including his own experience, to collect that
useful information into just such a book. This work demystifies hardware inventory customization
with practical examples and step-by-step guidance. And it's easy to read. Jeff is a talented writer
(ot he wouldn't have been recruited to write about SMS for Microsoft). I recommend that every
SMS administrator keep this one in your tool bag or bookmarked on your favorites list.

Steve Kaczmarek
Author, Microsoft Systems Management Server 2003 Administratot's Companion (MS Press,
2003)

START TO FINISH GUIDE TO MOF EDITING

Introduction

In 2002, Michael Schultz’s eye-opening MOF editing guide took the SMS world by storm. To this
solid base, I've added my own insights into the mysterious world of SMS hardware inventory
customization.

This current version of the guide is the culmination of the hard work of many people. In
particular, my thanks go out to Michael Schultz, Garth Jones, any previous and future “MOF
Masters” out there and last, but certainly not least, Microsoft, myI'Tforum, Inc., and the rest of the
SMS community at large who all strive for success one SMS administrator at a time.

The ultimate aim of this current incarnation of the MOF Editing Guide is to set up SMS
administrators for success in modifying SMS hardware inventory. The guide begins with getting to
know the basics of WMI and the hardware inventory process itself. Next, I've explained each of
the various methods for modifying hardware inventory in as much detail as I could fit between
the margins of the printed page. The end result is an informative guide to modifying hardware
inventory that I've also tried to make fun to read.

When learning how to modify SMS hardware inventory, you may have days when you will wish
that you had taken up a different vocation. You may also find yourself alienated by loved ones
threatening to leave if you don’t stop the recurring late night primal scream therapy sessions with
your laptop.

Do not be discouraged by any early, failed attempts at modifying hardware inventory. With the
help of this guide, modifying the SMS_def.mof will be as easy as sending an email to an old

friend—only, in this case, instead of asking “Anything new going on back home?” you’re asking
“So, anything new with the Win32_Desktop class?”

T arm abays doing that which 1 can not do, in order that 1 maay learn how fo do it.”

—Pablo Picasso

START TO FINISH GUIDE TO MOF EDITING

Chapter 1: Boot Camp

Introduction to WMI, SMS Hardware Inventory, and MOF
Files

class utilizing the property provider to enable SMS to collect registry data from

B efore spending hours writing about how to instantiate a data and reporting
the WMI repository of your clients. ..

I should probably go over what in the heck all of that means. Right?

Don’t worty. By the time you’re finished reading this book, you too will be able to say
confusing phrases in front of your boss and coworkers. In fact, you’ll not only be able
to say them, but you’ll actually understand what they mean!

There are three topics to discuss before we get this party started:
» What is WMI?
» How does the SMS hardware inventory work?

» What are MOF files?

What is WMI?

Founded in 1992, the Distributed Management Task Force (DMTF) is the industry
organization leading the development of management standards and integration
technology for enterprise and Internet environments. In 1996, the DMTF created the
Web-Based Enterprise Management (WBEM) initiative. This initiative is a common
interface for applications and operating systems to access key enterprise data from their
client systems and hardware components. The Microsoft implementation of WBEM
is Windows Management Instrumentation, better known as WMI.

WMI is preinstalled in Windows Server 2003, Windows XP, Windows ME, and
Windows 2000. For Windows NT 4.0 SP4 and later, WMI is available through
“Add/Remove Windows Components” in Control Panel as WBEM option install.
WMI 1.5 is available for Windows 95/98 as well as a later, more comprehensive,

Older devices and
components may not be
registered correctly for WMI
to access the data. However,
most new devices provide an

abundance of information.

START TO FINISH GUIDE TO MOF EDITING

version for Windows NT 4.0 is available as an Internet download from the Windows
download site: Windows Management Instrumentation (WMI) CORE 1.5 (Windows
95/98/NT 4.0):

h www.microsoft.com/downloads/details.aspx?FamilvID=afe41{46-c¢213-4cbf-

9c5b fbf236eOeS75&D15playLang—en

WBEM: “web-um” Web-Based Enterprise Initiative - a common interface for applications
and operating systems to access data from their client systems and hardware components.

WMI: “doubleyou-em-eye”. Windows Management Instrumentation - Microsoft’s
implementation of the WBEM initiative.

On computers that are running either Windows XP or the Windows .NET
Framework, the build version for WMI is the same as the build version for the
operating system. The version of WMI also reflects the version of the operating
system. For example, the version of WMI that is included with Windows XP is
5.1.2600.0.

Be aware that some Windows 95/98 clients may have issues being upgraded to WMI
1.5 if their DCOM has not been upgraded to version 1.3 first. DCOM for Windows

95/98 can be downloaded here: http://www.microsoft.com/com/default.mspx

So what is WMI good for? WMI holds the answer to any and all questions ... about

a computer, that is. It resides in the bowels of a2 Windows based system and is
constantly alert to the condition and nature of its surroundings.

If you’re looking for information such as: BIOS version, CPU speed, performance
monitoring data, manufacturer of the CD-ROM, or even the location and path of
every single shortcut on a particular system, the system’s WMI repository is the place to

£0.

What about my RAM? Can I find information on that in the WMI? Certainly.
You can find how out much RAM you have, how many physical chips are present, and
in which physical slots those chips can be found. As I said, WMI is meant to be a one-
stop shop for any and all information about a computer system.

Some manufacturers create their own applications that access hardware data, such as
the HP Client Management Interface (HP CMI). But, what if you have HP/Compaq
and IBM machines in-house? Now you will need 720 tools to access the data. You can
see where this is going.

In a perfect wortld, every computer in your company would be identical, from the
operating system all the way down to the smallest jumper. However, in real life, the
variety of systems would easily rival Baskin Robbins’ 31 flavors.

START TO FINISH GUIDE TO MOF EDITING

How exciting would the world be if every car was the same color and same shape?
That wouldn’t be very exciting right? What Microsoft did was to develop the internal
combustion engine in WMI. So, when creating a new application, software developers
apply Microsoft’s basic designs to run their “car”, but they are free to make it look any
way that they want. In other words, Microsoft created WMI as a tool to enable data
storage and extraction from within a framework that is machine independent.

So WMI will let me access my hardware data, no matter who made the machine?
Right. The manufacturers of your CD-ROMs, hard drives, motherboards, video cards,
and most other components, have agreed to abide by the initiative created by the
DMTF. If they have placed the data in the correct location, in the proper way, WMI
will be able to access it.

WMI is meant to be ahead of its time. Often there are classes in WMI that hardware
inventory can collect, but the hardware manufacturers do not have the data in place to
be collected.

So if I want this hardware data, I have to access WMI to get it. Are there any
tools I can use to access WMI? There are many tools to access WML Among the
most common are WBEMTEST.EXE (located in your wbem directory as
%WINDIRY\system32\whem directory) and CIM Studio. CIM Studio comes with the
WMI Administrative Tools, which can be downloaded from MSDN:

ht www.microsoft.com/downloads/details.aspx?Familyld=6430F853-1120-

48DB 8CC5-F2ABDC3ED314&displaylang=en. However, there are many
applications that have hooks into WMI which enables them to access the data

contained therein.

And if that was not enough WMI information to get you started, don’t worry. I'll go
into a lot more about WMI, how it relates to SMS, and how to manipulate it to serve
the forces of good in Chapter 4.

How Does Hardware Inventory Work?

SMS is an excellent tool for gathering hardware data from client machines. Instead of
having a unique method of extracting data from each different system, the hardware
manufacturers have stored all of their data in such a way that it can be accessed by
WMI and SMS hardware inventory.

Enabling hardware inventory causes SMS to install the appropriate agent components
on Legacy Clients, and enables, or turns on, the pre-installed inventory agent for
Advanced Clients. Once installed or enabled, the hardware inventory agent starts
collecting data on a schedule you specify. Technically, the agents involved are the
hardware inventory agent for Legacy Clients and the inventory agent for Advanced
Clients.

START TO FINISH GUIDE TO MOF EDITING

I’m going to go out on a limb here and assume that you know how to enable hardware
inventory and set the schedule for it to run since you’re reading an advanced inventory

book ©

Maybe a quick explanation of the flow of things will help you out here.

The inventory process for Legacy Clients and Advanced Clients is fairly similar, but
different enough to require separate explanations.

Legacy Clients. Ahhh, old friend how I miss your simplicity ... but I digress. Legacy
Clients follow the procedure below to get all their juicy bits into the SMS database:

>

The hardware inventory agent component quetries the local system WMI for
X, Y, and Z data, which it then places into a .MIF file

This file is copied to the client access point (CAP).
The CAP then copies the .MIF file to the SMS Site Server.

The data loader service on the site server parses the .MIF file and enters the
data into the appropriate tables in the SQL database.

The workstation’s hardware inventory data can now be viewed and queried in
the SMS database and resource explorer.

Advanced Clients. The Advanced Client is a little pickier. A stickler for
administration, it requires an official inventory policy from management to follow for
conducting inventories.

>

The SMS policy provider creates an Advanced Client policy for conducting
hardware inventory based on the SMS_def.mof stored on the site server.

Advanced Clients retrieve this policy from their management point at their
next scheduled client policy refresh interval (by default, this is once per hour).

The Advanced Client dutifully conducts hardware inventory by poking around
the local system WMI according to the policy instructions. It then forwards
the all important X, Y, and Z data back to the management point in . XML
format.

The management point completes the loop by sending the inventory results
back to the SMS site server which squirrels away the data in the SQL database.

The workstation’s hardware inventory data can now be viewed, and queried in
the SMS database, and resource explorer just like the Legacy Client.

START TO FINISH GUIDE TO MOF EDITING

Just to reinforce this process, here’s a simple diagram in Figure 1.1.

Figure 1.1

Primary Site Server
and SMS Database

- 8

E J

Management Point CAP
[_
=
Advanced Client Legacy Client

The initial inventory for both client types is a full hardware inventory. This establishes a
baseline for future inventories. After the initial hardware inventory, the subsequent
inventories usually only send changes, or deltas, to their respective supervisors—the
client access point for Legacy Clients and the management point for Advanced Clients.

This delta inventory is a good idea. I mean, how many times do you need a client to
report that the same hardware is installed? Not to mention the reduction in redundant
data packets traveling around your network and slowing down your ability to surf the
Internet to check on your favorite football team’s stats.

So what happens if a client isn't connected to the network during the next
hardware inventory cycle? The Advanced Client is designed to provide inventory
data when the client has a non-continuous network connection. This means that

hardware inventory still goes on as scheduled, but the actual inventory report isn’t sent
up until the client’s network connection has been restored.

Now, you will notice above that the hardware inventory component queries WMI for
X, Y, and Z data to place into an inventory results file (either .MIF or . XML). The
question of the week: What if you, as an SMS administrator, actually want W, Q, R, X,
L, M, P, and a little bit of £x?

The answer: SMS uses a .MOF file to search for those needles in the haystack. This
file is named SMS_def.mof and is found in the %WINDIR%\MS\SMS\ Sitefile\ <site
code>\Hinv folder on Legacy Clients. For Advanced Clients, the SMS_def.mof file is
stored in the SMS\INBOXES\CLIFILES.SRC\HIN1 directory on the site setver.

START TO FINISH GUIDE TO MOF EDITING

What Are MOF Files?

A MOF (Managed Object Format) file is simply a text file with the data contained
within stored in a fairly simple to understand format.

MOF: “mawf” Managed Object Format — The MOF file is a set of instructions and
locations from where data should be extracted from WMI.

So, long story short, hardware inventory is configured by using one of these funky
files—the SMS_def.mof. This file is just one of the many files copied to the SMS 2003
Legacy Client when a client install occurs. The Advanced Client receives a policy
generated by the site server’s policy provider based on the SMS_def.mof stored on the
primary site server. Think of the data inside the SMS_def.mof file as a roadmap for the
hardware inventory to follow as it drives around your systems.

This fancy text file includes the WMI location of the attributes you’re after with
hardware inventory and gives the inventory agent instructions on how to get to it. SMS
can read this file because the text inside is structured in such a way that when it is
compiled (either by the Legacy Client itself or the policy provider for Advanced
Clients) the data contained within is added to the local WMI.

What do you mean “compile”? As stated eatlier, a MOF file is simply a text file with
a .MOF extension. Having the MOF extension on the file signifies that there is data
inside that can be added to WMI. A tool which is present on every Windows
computet, called MOFCOMP.EXE, can be used to compile this MOF file into a
machine readable format, and add the data to the WMI repository of SMS client
systems.

In the following example, the data inside TESTFILE.MOF will be added to the local
WMI on the workstation:

C:\winnt\system32\wbem\MOFCOMP testfile.MOF

Can I put just anything in the MO file and add it to WMI? Sotty, no. If it was
that simple, there’d be no need for this book. The data in the MOF file must be
structured exactly right for MOFCOMP to know how and where to put it in the WMI.
The syntax and details of this will be discussed later.

So the SMS_def.mof file tells the hardware inventory what to collect? Almost.
The data znside the file is what is zndirectly used to guide the hardware inventory. The
hardware inventory queries WMI for the data it should collect; and then she queries
WMI again to actually collect that data.

START TO FINISH GUIDE TO MOF EDITING

What do you mean “she”? Well, the hardware inventory /as to be female. She makes
sure to ask for directions.

That was poor. 1know. Sorty.

Seriously, though, the hardware inventory is #naware of what data it is supposed to
collect until that data is entered into the WMI by compiling the SMS_def.mof.

On SMS 2.0 and SMS 2003 Legacy Client, the hardware inventory first checks to see if
the SMS_def.mof file that was copied from the site server to the client access point is
newer than the aurent SMS_def.mof file on the local system. During client installation,
because there is no current file, the SMS_def.mof is automatically compiled; then
copied into the %WINDIRY\ms\SMS\ clifiles\hinv directory, thereby becoming current.
The SMS_def.mof file is only compiled if the version from the site server is newer than
the current version on the local machine.

When an SMS administrator is interested in changing what the hardware inventory
collects from their clients, they must change the SMS_def.mof file, copy it to their site
server, and then this becomes the 7ew SMS_def.mof file. This new SMS_def.mof is
copied to the client access points. During their client refresh interval the Legacy
Clients will recognize that there is a new SMS_def.mof file located on the client access
point and download and compile it.

For Advanced Clients, when a modified SMS_def.mof is placed on the site server, it is
automatically compiled, and if it is syntactically correct, a new inventory policy is
created. This new policy is sent to the management points to update the client
inventory policy at their next policy request interval. This works fine as long as there
hasn’t been any major changes introduced in your modified SMS_def.mof file.

What do you mean major changes? By major changes I mean the introduction of a
new provider, or an additional class not in the system’s WMI repository by default.

You will need to follow the steps below in order to compile the new inventory
information from the modified SMS_def.mof for the Advanced Client.

If these steps aren’t followed correctly, the Advanced Client will not be able to report
new inventory information based on your modified SMS_def.mof file.

In order to update the advanced client’s WMI repository to reflect the new classes you
are after, you need to manually compile the SMS_def.mof o each and every Advanced
Client in your hierarchy.

» Copy the new SMS_def.mof to the client’s temp directory (c:\temp)

» Execute MOFCOMP c:\temp\SMS_def.mof

START TO FINISH GUIDE TO MOF EDITING

Additionally, you will need to create an SMS program that performs these tasks and
advertise it to run on a schedule for current or future Advanced Clients that have
missed these steps.

I really want all of the data from my client machines. Do I still need the

SMS_def.mof file if I just want everything? Well, first off, yes. Remember, that
hardware inventory doesn’t know what it’s supposed to collect until the SMS_def.mof
file is compiled and places the roadmap into WML

Secondly, as previously noted, WMI contains information about almost everything on the
client. That means you can get information on how fast the fans are spinning inside
the client machines, how many volts are being used by the power supply, and how hot
the processor was at the time of the inventory. That’s a heckuva lot of datal

Think about WMI as a big yard sale. Now, you cww/d pick up everything there for
$17.25 and fill your basement with junk, or you can pick and choose which items you
will actually use. It’s your call, but it is usually best to be selective about what data you
collect in order to put as little strain on your client machines, network, and site server as
possible.

Strain on my clients, network, and site server? How much of a strain? Okay,
perhaps strain is too strong of a word. The impact of the hardware inventory on
typical business machines in this day and age is almost negligible, as is the impact on
the site server and network. Maybe the greater concern would be the enormous
haystack of useless data one would be required to wade through to find the needle of
good information.

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

WMI
e In 1996, the Distributed Management Task Force created the Web-Based
Enterprise Management initiative (WBEM). The Microsoft implementation of
this initiative is Windows Management Instrumentation or WMI.

e WMI is a management technology built into Windows that allows you
to access system resource information including hard drives, operating
system information, services, registry settings, and pretty much whatever else
you want to know about a computer.

Hardware Inventory
The inventory process for Legacy Clients and Advanced Clients is fairly similar, but
different enough to require separate explanations.

O Legacy Clients. Legacy Clients maintain their own local copy of
the SMS_def.mof file. They report hardware inventory information
to a client access point which forwards it to the SMS Site Server and
eventually to the SMS database.

O Advanced Clients. Advanced Clients receive an inventory policy
from a management point based on the contents of the
SMS_def.mof file. Using this policy, the Advanced Client conducts
hardware inventory and reports the resulting data back to the
management point. The management point sends inventory report to
the primary SMS site server and SQL database tables.

The initial (and complete) inventory for both client types establishes a baseline for
future inventories. After the initial hardware inventory, the subsequent inventories
usually only send changes—or deltas.

Managed Object Format (MOF) files are text files and should be viewed with
NOTEPAD.EXE. SMS can read these files because the text inside is structured in
such a way that when it is compiled (either by the Legacy Client itself or the policy
provider for Advanced Clients) the data contained within is added to the local system
WML

START TO FINISH GUIDE TO MOF EDITING

SMS clients use the SMS_ def.mof file to determine what information will be collected
during the next hardware inventory in different ways.

» Legacy Clients store a local copy of the SMS_def.mof file in the
%WINDIRY\ms\SMS \clifiles\ hinv folder.

» Advanced Clients rezrieve an inventory policy based on the SMS_def.mof stored on
the site server in the SMS\anvboxces\clifiles.sre\hinv shate.

Whenever the SMS_def.mof file is changed, SMS loads its contents into the SMS
database so that Advanced Clients can request them as policy from the management
point. The SMS_def.mof is also downloaded to client access points so that Legacy
Clients can acquire it.

Introducing a new provider, or additional class not in the system’s WMI by
default, requires that the SMS_def.mof be manually re-compiled for the
Advanced Client.

To manually re-compile the SMS_def.mof on Advanced Clients to enter new
information into the local system’s WMI follow these steps:

M Copy SMS_def.mof to the system’s temporary ditectory (c:\temp).
M Execute MOFCOMP c\temp\SMS._def mrof .

M Create an SMS program that performs these tasks and advertise it to run on a
schedule for current or future Advanced Clients that have missed these steps.

WBEM: “web-um” Web-Based Enterprise Initiative - a common interface for applications
and operating systems to access data from their client systems and hardware components.

WMI: “doubleyou-em-eye”. Windows Management Instrumentation - Microsoft’s
implementation of the WBEM initiative.

MOF: “mawf” Managed Object Format — The MOF file is a set of instructions and
locations from whete data should be extracted from WMI.

10

START TO FINISH GUIDE TO MOF EDITING

Chapter 2:

Introducing the SMS_def.mof
What is the SMS_def.mof file, and why do I care?

process, often requiring hours of preparation and implementation for even
the slightest modification. In fact, it’s pretty dangerous. So, before
changing the MOF, I would update your resume.

M odifying the SMS_def.mof file, A K.A. “the MOF”, is a long and tedious

I’'m just joking! Making changes to the MOF is surprisingly simple, as long as you
follow the proper steps. After a bit of practice, an experienced admin should be able to
modify or even add new classes to the MOF and deploy it site-wide very quickly.

Chapter 1 offered a brief introduction to WMI, SMS hardware inventory, and MOF
files in general. In this chapter, we’ll cover the role of the MOF file and its relationship
to SMS hardware inventory in depth. As our examination of the MOF becomes more
detailed, so will the analogies.

The Menu to Hardware Inventory

The SMS_def.mof file is more than just a roadmap for hardware inventory. It’s more
like placing an order at your favorite restaurant. There is an entire menu of items to
select from, but there are a limited number of those items you actually want. The
MOF file is the order you're placing at W.M.LFridays. Except, instead of ordering
extreme fajitas or smoked chicken, you’re ordering Win32_Processor and
Win32_VideoController data.

When you enter W.M.I. Fridays, you’re given a menu and asked to select the items you
want. By default, if you do not select the items, that means you don’t want them.
Also, just like a real restaurant, you can even request “‘special orders”.

I think I'll order today and I'll have...Win32_Fan for an appetizer,
Win32_VideoController for the main course, and for desert. . .the scrumptious
Win32_SystemEnclosure! I do 7ot want Win32_Refrigeration because it gives me
frightful headaches, and Win32_SerialPort gives me heartburn.

11

START TO FINISH GUIDE TO MOF EDITING

When I'm done with my order, I turn it in to W.M.I. Fridays. In other words, when
you’re done editing your SMS_def.mof file, the information is entered into WMI on
the client machine.

How does the information in the SMS_def.mof file get entered into the client’s
WMI? 1f you recall from Chapter 1 when the MOF file is compiled the information
contained within gets added to the local system WMI. Also remember that when a
new MOF needs to be deployed you must use the appropriate method for each type of
SMS client. This is done to make sure that hardware inventory is collecting exactly
what the administrator wants to collect.

If I don’t change anything in the SMS_def.mof file, am I turning in a blank,
order? Actually, no. You see, W.M.L Fridays is owned by Microsoft Foods. They
selected some of the more useful items, and added them to everyone’s order, so it
automatically has those selected on the default menu. To keep from getting the items,
you have to make it a point to remove them from your order.

In other words, they reasoned that there were certain items from WMI that sz
administrators will want to collect, and it would be easier to “pre-order’” them when
SMS is installed, instead of making a book, such as this one, required reading before
getting any useful data.

So in my default SMS_def-mof file, I already have things ordered for me? That's
not cool. 1 must disagree. Most of the items that Microsoft selected are extremely
valuable. Without changing the SMS_def.mof file at all, your site will contain the
processor speed, manufacturer, CD-ROM type, hard disk size, and many other useful
pieces of information from each of your clients. If you ask me, Microsoft could have
selected 7zore items to “pre-order”.

As you can imagine, the SMS_def.mof file can be extremely valuable to an
administrator tasked to collect even the most obscure data from their client machines.
The SMS_def.mof file allows the administrator to:

» Otder an item from WMI.
» Not order an item from WMI.
» Special request an item from WML
Unfortunately, the process of editing the SMS_def.mof file cannot be all fun and

games, but I'll do my best to entertain you during the most boring parts. Starting ...
now.

12

START TO FINISH GUIDE TO MOF EDITING

A Look Inside the SMS_def.mof

When opened in notepad, the SMS_def.mof file can appear formidable. If you
examine every character, every word, or even every phrase, it can seem like a swarm of
bees that should not be disturbed. “Leave it alone” is what you may tell yourself the
first time you look at it. But don’t be afraid. The MOF is more like a litter of kittens.
Not much to be scared of, but you still need to be careful.

Notepad is the preferred editor to avoid adding hidden characters into the file as some
text editing programs may do.

There are two pieces of the SMS_def.mof file; the tiny top 1% of the iceberg, and the
bottom 99% that actually should concern you most days. The top 1% declares
namespaces and providers. However, if you scroll through the rest of the file, you will
see the real meat of the MOF.

The bottom section consists of blocks of code which are called reporting classes.
These reporting classes are entered into WMI when the MOF is compiled, and
ultimately read by the hardware inventory process to determine what information is to
be collected and sent back to the SMS database.

Declarations

In the below example the text in red is the iceberg—the declarations, the black text is a
partial example of a reporting class. Notice the top portion defines the namespaces
where the data resides, and the providers used to access it. The reporting classes
contain information within those namespaces that the provider uses to get the data.

[
//// SMS_def.mof - Maps SMS inventoriable set to that provided by
VL the WBEM CIMV2 Win32 Provider - version 1085

//// Copyright (c) Microsoft Corporation, All Rights Reserved
[

//

// Create namespaces used by the Inventory Agent

//

#pragma namespace ("\\\\.\\root\\CIMV2")
instance of __Namespace

{
h

#pragma namespace ("\\\\.\\root\\CIMV2\\SMS")
class SMS_Class_Template

{

b

Name = "SMS" ;

13

START TO FINISH GUIDE TO MOF EDITING

/I

// Register the view provider in the SMS namespace
// Refer to WMI SDK documentation for use

//

#pragma namespace ("\\\\.\\root\\CIMV2")
instance of __Win32Provider as $ViewProv
{
Name = "MS_VIEW_INSTANCE_PROVIDER";
Clsld = "{AA70DDF4-E11C-11D1-ABB0-00C04FD9159E}";
ImpersonationLevel = 1;
PerUserlnitialization = "True";

5

.[SMS_Report (TRUE),
SMS_Group_Name ("BIOS"),
SMS_Class_ID ("MICROSOFT|PC_BIOS|1.0")]

class Win32_BIOS : SMS_Class_Template
{

[SMS_Report (FALSE) 1]

uint16 BiosCharacteristics|];
[SMS_Report (TRUE)]

string BuildNumber;
2

Class Level Reporting Properties

Each block of code represents a menu item that you can order from W.M.I. Fridays.
At the very top of each block is what is called a class level reporting property. This
line looks like either “[SMS_Report(FALSE)” or “[SMS_Report(TRUE)” and it tells
hardware inventory if that block of code should be reported to SMS or not—would
you like the PC_BIOS class for dessert?

Field Level Reporting Properties

You may also notice that inside each reporting class (block of code), there are similar
lines that say [SMS_Report(TRUE)] or [SMS_Report(FALSE)]. Unlike the class level
reporting property, these lines represent the individual bits of data inside a class. These
lines are called field level reporting properties.

14

START TO FINISH GUIDE TO MOF EDITING

Below is an example of the Win32_SystemEnclosure reporting class. You’ll notice that
not only is the class enabled, but only the SerialNumber field is set to report. For now,
don’t worry about the syntax and just note how the class and its fields are enabled.

[SMS_Report(True), € Class Level Reporting Property
SMS_Group_Name("System Enclosure"),
SMS_Class_ID("MICROSOFT]|System_Enclosure|1.0")]

class Win32_SystemEnclosure : SMS_Class_Template

{
[SMS_Report(False), key]
string Tag;
[SMS_Report(False)]
string Caption;
[SMS_Report(False)]
string Description;
[SMS_Report(False)]
string Manufacturer;
[SMS_Report(False)]
string Name;
[SMS_Report(True)] € Field Level Reporting Property
string SerialNumber;

Just like ordering in a restaurant, you can order a burger without the pickle. You can
even order it without the bun so you're left with just a beef patty. If that’s the way you
want it, you can have it!

If you want to inventory the Win32_SystemEnclosure class, but you on/y want the serial
number information, just change the class level reporting property from FALSE to
TRUE and set all of the fields under that class to FALSE except for the SerialNumber
field. Voila! The only data that SMS will see from the Win32_SystemEnclosure Class
will be the serial number information.

If I want other fields under that class, I just keep changing FALSE to TRUE?

Yes. The only thing that needs to be done for SMS to start reporting on a field is to
change FALSE to TRUE on the field level reporting property line.

Many classes in the default SMS_def.mof file are already enabled at the class level, but
may not have all of their fields enabled. Take a few minutes to scroll through all the
reporting classes in the default SMS_def.mof and see if there are any additional fields
you would like to enable to get them reporting to SMS.

What happens if I change all of the field level reporting lines to TRUE, but
change the class level line to EALSE? No data from that class will report to SMS.
Even if you only want the beef patty, you still have to order the burger first.

15

START TO FINISH GUIDE TO MOF EDITING

The same thing will happen if you change the class level reporting property to TRUE
and all of the field level reporting properties to FALSE. If you order the burger
without the pickle, bun, condiments, or beef patty, what is left?

Therefore, if you want any of the data inside a reporting class, you first have to verify
that the class level reporting property is set to TRUE, and then enable any of the
desired field level reporting lines inside that class.

Let’s say at Schultz, Inc. I'm a freak about fans, so I want to know how fast the fans are
spinning on my workstations. Since this is not typical information most administrators
are interested in, it's not included by default in the SMS_def.mof, however it 7s included
as a standard Win32 WMI class

Because this is a standard WMI class, the only thing I have to do is create a reporting
class in the MOF that says TRUE I want to see the Win32_Fan class, and TRUE I
want to see the Desired Speed field in that class. (Again, the exact syntax for this type
of addition will be explained later).

If added correctly, I will now have the fan speed for all of my workstations reported to
SMS, and displayed for the systems in Resource Explorer. WOOHOO!

In the above example, Win32_Fan is an existing class in systems with WMI 1.5
installed. Also, this class may not be populated with data if the hardware
manufacturers have not provided the information in the proper format and locations.
The example is used more for its simplicity than anything else.

ORay, the SMS_def.mof is used to order, or not order, items from the menu.
What are these “special orders” you talRed about before? WML is able to provide
just about anything your heart desires. However, you may come across a situation
where you need to query the registry or even create a new WMI class that just didn’t
make it to the menu. To make these special orders you will need to create your very
own data classes as well.

Special Orders

Occasionally, the information that you need to retrieve from a system is not found in
an existing data class. Sometimes you will need to find information found in registry
keys, such as application versions and system settings. However, because registry
information is not normally collected by mere mortal SMS admins in either the
hardware or software inventories, this becomes a more difficult request. Don’t worry,
by the time you finish this book youll be able to do it in your sleep.

Thankfully, Microsoft provided the tools necessary to extract this information using
WML

16

START TO FINISH GUIDE TO MOF EDITING

What are these tools? Well, remember the top 1% of the MOF “iceberg” that I
mentioned eatlier—the declarations? That is where the tools for the default
SMS_def.mof file are located.

Example: At CDS Lettering, Inc., we put the User ID of the primary user of each
machine somewhere in the registry. Because gathering registry keys is not standard
(and there is obviously no existing class for every registry key or combination of keys) I
have to add three items to the MOF.

» 'The Provider - What tool should I use to get a registry key?
» 'The data class - Where is this registry key?

> The reporting class - What does SMS want to see?

The registry providers are in the default SMS 2003 SMS_def.mof so you do not need
to register a new provider to query registry keys with SMS 2003. However, there may
come a time when you will want to register a different provider not registered by
default, so pay attention. If you are still running an SMS 2.0 site, you absolutely must
declare the registry providers.

Providers

The "tools" used to query for inventory information are called providers. In his
hardware inventory training class Scott Stephen had an excellent analogy about the
provider being a butler who shops at WMI-Mart. The shopping list used by the butler
is the SMS_def.mof file.

Provider: A WMI Provider is a COM object that is an intermediary between WMI and a
managed object.

Continuing with Scott’s analogy, there are actually three different types of butlers.

The first butler (or provider) we’ll discuss is able to get you just about anything you
want from WMI-Matt, as long as you tell him exactly what it is you want, and exactly
where he can getit. This is the Property Provider.

Property Provider: A Property Provider retrieves and modifies individual property values
for instances of a given class that is stored in the WMI repository.

If you were instructing the Property Provider to shop for you, you would tell it:

17

START TO FINISH GUIDE TO MOF EDITING

"Get me the DVD movie 'Hannibal' from the Electronics atea, aisle 7, shelf 1, column
9. Also get me a Hanes T-Shirt, white, large, style A, from Men’s Clothing; aisle 4,
shelf 3, column 6, and finally a bag of WEGE pretzels, broken, 18 oz, from the Food
area, aisle 2, shelf 4, column 2."

The second butler (or provider) is less picky, but is also limited in certain ways. This
butler doesn't need to know exactly what you want, but it is only able to shop in one
area for one type of item. This is the Instance Provider.

Instance Provider: An Instance Provider supplies instances of one or more given classes.

In instructing the Instance Provider to shop for you, you would tell it:

"Go to the Electronics area and get me the name, price, producer, and director for
every movie in aisle 7."

The third butler (or provider) is able to get you just about anything you want from
WMI-Mart’s mall or parking lot as long as it exists within WMI, and not just the SMS
portion of WMI. This is the View Provider.

View Provider: The View Provider is an instance and method provider that creates new
classes based on instances of other classes. You can use the View provider to take properties
from different source classes, different namespaces, or different computers and combine the
properties as a single class. We’ll talk more about the View Provider in greater detail in
Chapter 8.

Obviously, each butler (or provider) will be useful in different situations, depending
upon your needs. With SMS 2003 all the butlers (providers) are now registered within
the default SMS_def.mof. However, in SMS 2.0 since it's not typical to "shop" for
registry keys and in the standard SMS_def.mof, the providers are not found in the file
by default. Each type of provider only needs to be defined once at the top of the SMS_def.mof.

For SMS 2.0, I recommend downloading the Monster MOF freely available on
www.SMSExpert.com. This MOF file includes all the providers and it a good starting
point for Administrators new to SMS_def.mof editing.

For this next example, I'll be using the Registry Property Provider — since I know the
exact key that I want, and I know where it is located. If it’s not already there, to put the
registry property provider into my SMS_def.mof, I'd simply add the following lines:

#pragma namespace("\\\\-\\\root\\CIMV2")
instance of __Win32Provider as $PropProv

{

18

START TO FINISH GUIDE TO MOF EDITING

Name = "RegPropProv";
Clsid = "{72967901-68EC-11d0-B729-00AA0062CBB7}";

5

instance of __PropertyProviderRegistration

{

Provider = $PropProv;
SupportsPut = TRUE;
SupportsGet = TRUE;

|

“OTE Just for kicks I’ll show you the Registry Instance Provider. Remember, they are 2

separate entities.

instance of __Win32Provider as $InstProv

{
Name ="RegProv";
Clsld = "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;
2
instance of __InstanceProviderRegistration
{
Provider = $InstProv;
SupportsPut = TRUE;
SupportsGet = TRUE;
SupportsDelete = TRUE;
SupportsEnumeration = TRUE;
2

Don’t worry about trying to learn the code that | pasted above. It is only there to show

TE you what two of the tools mentioned look like in case a fire breaks out.
Ho I’ll show you the View Provider later in Chapter 8. It can be a little tricky and
’% confusing to introduce it at this point, and | want you to understand these first
important concepts clearly.

Data Classes

The key I'm looking for is located in: HKEY_Local Machine\Software\Schultz and the
Value name is UserID. To declare this information in the SMS_def.mof, I will create a
data class in the o\ CIM1/2 namespace.

19

START TO FINISH GUIDE TO MOF EDITING

#pragma namespace("\\\\-\\root\\CIMV2")

[DYNPROPS]
class SchultzID

[key] string KeyName="";

string UserlD;
5
[DYNPROPS]
instance of SchultzID
{

KeyName="The Schultz User ID";

[PropertyContext("locallHKEY_LOCAL_MACHINE\\SOFTWARE\\Schultz|U
seriD"),

Dynamic, Provider("RegPropProv")] UserID;
I

Notice that two items were declared. First, a data class was created - called SchultzID.
Second, an Instance of that class was created that tells WMI exactly where the registry
key and its value are located, and finally, where to put the information.

Reporting Classes

The data class has been defined, so now I just need to make sure this data is collected
by SMS. To do this, create a reporting class must be created to allow SMS to collect
the "SchultzID" data class. Notice that the reporting class is defined in the

100\ CIM 12\ SMS namespace:

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE),
SMS_Group_Name("My Schultz ID"),
SMS_Class_ID("SchultzID")]

class SchultzID : SMS_Class_Template

{
[SMS_Report(TRUE),key]
string KeyName;
[SMS_Report(TRUE)]
string SchultzID;
2

Put those three sections together, and when the MOF is compiled, the WMI angels fly
down from the heavens and, magically, the class is created. The next time a hardware
inventory is run, the client will report this data to SMS!

20

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

This chapter was just to introduce some of the core concepts of viewing and editing
the MOF. Don't get flustered if you don't understand it all, as I'll be covering this and
more in much greater detail in the rest of the book.

Modifying the SMS_def.mof is not terribly complicated if you follow the correct
procedure.

The SMS_def.mof allows administrators to collect information stored in WMI, add to
default inventory information, and report that information back to the SMS site server.

Notepad is the preferred application for modifying the SMS_def.mof.
What needs to be defined in the MOF:

» The provider - What tool to use to get the data?

» The data class - Where is the data?

» The reporting class - What does SMS want to know about the data?

The SMS_def.mof file is divided into two major sections:

e Top—declares providers and namespaces
e Bottom—reporting classes

O Class Level Reporting Property

O Tield Level Reporting Properties

Both the class level reporting property and at least one field level reporting
property must be set to TRUE in order for any data to be inventoried for that
particular class.

There are three types of WMI Providers that SMS deals with on a normal basis:
1. Property Provider. A Property Provider retrieves and modifies individual
property values for instances of a given class that is stored in the WMI

repository.
2. Instance Provider. An Instance Provider supplies instances of one or more
given classes.

21

START TO FINISH GUIDE TO MOF EDITING

3. View Provider. The View Provider is an instance and method provider that
creates new classes based on instances of other classes. You can use the View
provider to take properties from different source classes, different namespaces,
or different computers and combine the properties as a single class.

Each type of provider needs to be defined only once in the SMS_def.mof.

Before you create a class, or register a Provider, check the SMS_def.mof file to see if
the class or provider already exists, but is simply disabled.

Provider: A WMI Provider is a COM object that is an intermediary between WMI and a
managed object.

Property Provider: A Property Provider retrieves and modifies individual property values
for instances of a given class that is stored in the WMI repository.

Instance Provider: An Instance Provider supplies instances of one or more given classes.

View Provider: The View Provider is an instance and method provider that creates new
classes based on instances of other classes. You can use the View provider to take properties
from different source classes, different namespaces, or different computers and combine the
properties as a single class.

22

START TO FINISH GUIDE TO MOF EDITING

Chapter 3: SMS_def.mof Syntax

Synte, 2y lacd. 1t has been restored to the bighest plave n the republic
—Jobn Steinbece

syntax. For simplicity, ’'m going to avoid covering every single item in the
MOF. Instead I'm going to discuss the basic structure of the MOF, individual
classes, and some of the most common elements used.

T he next step toward becoming a master MOF editor is to learn the proper

Compiling With MOFCOMP

I briefly touched on compiling in Chapter 2 but I’d rather not progress further without
giving you a better description. Although it may work against Stormtroopers, waving
my hand and uttering, “These aren’t the definitions you’re looking for”” won’t work
against someone as smart as yourself.

As I stated before, a MOF file is simply a specially formatted text file. A program that
comes with WMI, MOFCOMP (Managed Object Format (MOF) compiler) is used to
edit, delete, and insert classes in the local WMI repository based upon what is defined
in the MOF that has been compiled. When this executable is run with a MOF file as a
parameter, the program will read through the MOF line by line, top to bottom, and
perform whatever action is specified.

Unlike application compilers such as C++, Pascal or Visual Basic that take text from a
file and convert that text into machine code, MOFCOMP simply reads the file and
follows the instructions. In this way it is similar to a batch file. This could mean that
MOFCOMP must create a namespace, edit a class, or even delete a class from the local
WMI.

It is important to understand that MOFCOMP does only what it is instructed to do by
the MOF file. If you were to tell MOFCOMP to put a steak on the grill and take it off
after 10 minutes, you’re going to have a pretty rare steak unless you tell it to light the
grill first.

23

START TO FINISH GUIDE TO MOF EDITING

Because of this, it is very important to put your information into the MOF with the
understanding that the items closer to the top of the file will be compiled before those
closer to the bottom.

Figure 3.1 shows MOFCOMP in action ... and you thought this was going to be a
boring book!

Figure 3.1
INDOWS' system32\ cmd.exe
C:SWINDOWS system32suwhem>mnofconp sms_def .mof

Microsoft C(R> 32-bhit MOF Compiler Uersion 5.2.37960.8
Copuyright <c?» Microsoft GCorp. 1997-20001. All rights reserved.

Parzing MOF file: sms_def .mof

MOF file has bheen successfully parsed
Storing data in the repository...
Donet

If the compiler runs into an error, or a class that is not properly structured, it will cease
the compilation process and display an error message with the line on which the error
occurred, as seen in Figure 3.2:

Figure 3.2

WINDDWS' system32icmd.exe

G~ WINDOWS“system3 2 whemnofcomp sms_def .mof

Microsoft (R> 32-hit MOF Compiler Uersion 5.2.3790.8
Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.
Parsing MOF file: sms_def .mo

f
ems_def .mof (172: error SYNTAXK BR80044804: Missing closing hrace. or illegal app
ay element

Compiler returned error BxE0B44004
C=NWINDOWENsystemI 2 uwbem?

Because changes are almost instantaneous, every complete class or instruction prior to
the error will have had its intended effect on the WMI repository. Everything listed
after the error inducing line will not be seen by the compiler, as it has ceased the
compilation process.

Think of the compiler as a finicky moviegoer going to a new show. If “I'he MOFman
Prophecies” 1s a good movie, the compiler will stay for the whole thing, even through the
credits. If the film is poor in the slightest, the compiler is unforgiving, and will walk
out immediately, knowing only the parts it watched.

When a hardware inventory is run, MOFCOMP goes into action just as if you had
manually requested it to run. The logs for the hardware inventory, including status

24

START TO FINISH GUIDE TO MOF EDITING

messages about the success or failure of the MOF compilation, can be found in the
locations below:

e For the SMS 2.0 (or Legacy) Client: Yomwindir’/o\nzs\SMS\ logs\ hinv.log.

e For the SMS 2003 Advance Client: Yowindir”o\systen32\ccm\ logs\ inventoryagent.log

Comments

One of the most common phrases uttered by administrators editing the MOF is
“|Dadgummit], where did I put that?” Due to the size of the MOV, it is extremely easy
to “lose” classes and fields, or to forget where a change was made. Quite often, if two
administrators are working together, changes may be made by one of which the other
is not aware.

Because of this, commenting is extremely important. Let me repeat that—
commenting is exzremely important. Where is that new class you just copied in from
www.SMSexpert.com or from www.mylTforum.com? Who added that field to my
class? Did I add this, or was it in the default SMS_def.mof file? These are questions to

which you absolutely want answets.

Adding comments to a MOF file is very easy. There are two ways to comment text.
The first is with two forward slashes (/ /). These two characters together tell the
compiler to ignore everything on the line after the slashes.

These slashes could be used at the beginning of a line:
/I Start of new class entry (10/08/2005)

In the middle of a line of code:

#pragma namespace ("\\\\.\\root\\CIMv2'") //Hello ©

Or they can be used to create a block of comments to help structure your MOF:

/I START of MOF additions — M3

1

// 08/04/2005 - Gawd | hope this works!

/1 08/08/2005 - Added System Enclosure Class

The second way to comment in the MOF is to use /* and */ to surround the text you
want the compiler to ignore. This method is primarily used to “remove” classes

25

START TO FINISH GUIDE TO MOF EDITING

without actually deleting the code, but it can be used for large blocks of comments or
even simple comments as well.

For example, commenting a line:
/* Start of new class entry (10/08/2005) */

In the middle of a line of code:

#pragma namespace (""\\\\.\\root\\CIMV2'") /*Hello again © */

Or they can be used to “remove” a class from the MOF*:

/*

Here I'm defining a class

More class stuff...please don’t comment me!
| want to be added to WMI!

Please?

Sugar on top?

End Class definition

*

As you can see, commenting your MOF is a simple task and the benefits far outweigh
the time it takes to create them.

There are three rules that I follow when creating comments:

1. At the end of the stock SMS_def.mof file, create a large block of comments to
signify the end of the default section and the beginning of your own. Inside
this large block of comments make a summary of all the changes you are
adding, why you are adding them, who added them, and the date they were
added.

2. Before each new class is defined include a block of comments stating the name
of the class, what data it is to retrieve, any relevant Q articles, and any
modifications to the class with their respective dates.

3. Create a comment before any line that has been modified or altered from the
original, or if you want to remember why a class or field isn’t enabled for
mnventory.

Although it sounds like a tremendous amount of work, when you go back to your
MOF two months after making modifications, you’ll be very thankful that you made

these comments.

26

Remember that the compiler
interprets the MOF from the

top to bottom.

START TO FINISH GUIDE TO MOF EDITING

Definitions

Before going further into the syntax, let’s cover a few of the terms I'll be using in the
rest of the book. This is another section of the book that is pretty important, so for
those readers skimming the pages it’s time to downshift and actually read through this
section thoroughly. I have already mentioned some of these terms in the previous
chapters but it can’t hurt to review.

Namespaces

Namespaces are containers used to hold class and instance data. Adding a class to
WMI is not like leisurely tossing dirty socks into a hamper with the rest of the laundry.
Rather, adding a class is more like gently folding each piece of clothing and placing it in
the appropriate dresser drawer.

Each class must be placed in the appropriate drawer (or namespace) to be found when
hardware inventory comes looking for it. If you have placed your favorite pink polka-
dot socks in with your boxers, hardware inventory will not be able to find them when
the time comes to review your wardrobe.

A namespace is structured much like a file directory. Data and reporting classes are
defined inside a namespace just like files in a directory. This namespace (or directory)
can also have other namespaces (sub-directories) underneath it.

You may recognize the following line from your SMS_def.mof file:
Hpragma namespace ("\\\\.\\rooA\\CIM12")

This line can be interpreted as, "From this point forward, place all classes into the
r00/\CIM1”2 namespace until told otherwise." Prior to defining reporting classes, data
classes and Instances, this line is necessary to tell the compiler to put this information
in the proper location (hamespace).

Another line often seen is:
#pragma namespace (("\\\\\\rooA\CIMT"2\\SMS")

This line simply changes the namespace to be used to o \CIMI"2\SMS. Oftenina
heavily modified SMS_def.mof you will see the default namespace switched back and
forth between the two namespaces.

How many namespaces do I have to deal with? The two namespaces mentioned
above are the primary namespaces used when you’re making MOF modifications.
There are many more namespaces that you can spend your free time perusing for juicy
information to inventoty, but for now let’s stick to the main ones.

27

START TO FINISH GUIDE TO MOF EDITING

Reporting classes must be placed into the o0\ CIMT 2\ SM.S namespaces, while all data
classes and instances are usually in the 700/\ CIM172 namespace.

Why is that a rule? The reason for this is because of the way the hardware inventory
operates. When hardware inventory runs, it checks the 7o\ CIM172\SMS namespace
to find the reporting classes, which tell it which data class information to pull from the
data classes. The data class information in 70\ CIM12 either provides the hardware
inventory with data directly, or tells it where the data can be retrieved.

How does the hardware inventory Rnow which reporting class goes with which
data class? Fach data class and corresponding reporting class share the same class
name.

Do I have to use that namespace line before every class I create? No. You only
need to use the #pragma namespace line when you want to change the namespace to be
used. If you have a large amount of data that needs to go into the same namespace,
just add the line once prior to the modifications.

Great! Now what are these data classes and reporting classes again? Well, just
read on...

Data Classes

A data class is the rainbow that leads you to the pot of gold. It either contains the data
itself, or it points you to where you can get it.

If you are surfing the web for information, the data class would be the keywords you’re
searching for. If you’re looking for how old Mel Gibson is, you would enter “Mel
Gibson Age” into a search engine and you would be provided with either the answer
to your question, or you would be directed to a web page that would give you the
answer.

A pseudo-data class would look like this:

MelGibsonClass

MelsAge = 49;

MelsMiddleName = Florence;

MelsFavoriteCars =2 Go to www.favoritecars.com/melgibson.html
End MelGibsonClass

Again, notice in the example above that the data class can either contain the data
directly, or it can point you to a location where you can find the data you’re looking for,
as it does with MelsFavoriteCars.

28

START TO FINISH GUIDE TO MOF EDITING

Reporting Classes

The reporting class lets you pick and choose what classes and fields in WMI you want
to see reported to your SMS site. Using the same analogy above, the reporting class is
a filter of the data. Your data class can include every bit of information about Mel
Gibson, but if you only want his age, the reporting class will tell the hardware inventory
to only collect the MelsAge field from the MelGibsonClass data class.

As I mentioned eatlier, there are hundreds of other classes and thousands of fields that
could be added to the SMS_def.mof file. The reporting class enables you to define
what information you want to know about your SMS clients, and allows you to filter
out data that is either of no use to you, or hindering your use of relevant data.

For example, if you're bitten by a spider and want to know if it is poisonous, you can
find a plethora of information on the Internet about that spider. However, you don't
care what its Latin name is, whether it is indigenous to Canada, or how its migration
north is relational to the Mezzo-American jumping bean population.

What you want to see is:

Spider Name: Brown Recluse

Looks Like: Brown and Fuzzy

Poisonous: If you're able to read this page, you weren't bitten by one of these.

The reporting class allows you to filter out the junk and provides you with just the
"good stuff."

Remember, the namespace is changed to root\CIMV2\SMS prior to the reporting class

definition.

Instances

WMI was created with many object-oriented principles. One of these principles is the
process of defining a class in generic terms, and then creating an instance of that class.
Defining a class is like creating a mold. When you use that mold to create objects,
you're creating instances.

When you built sandcastles as a child, you may have used a bucket as a mold. When
the mold is removed, the wet sand retains the shape of the bucket. If you were to use
that same mold while making gelatin for a party, the gelatin would have the same shape
as the sandcastle, and probably have the same texture if you forgot to wash it out.

29

START TO FINISH GUIDE TO MOF EDITING

In short, instances of a particular data class will have the same shape, or fields, but they
may be comprised of largely different data.

Providers

If data classes are the keywords and reporting classes are the filters, then a provider
would be the search engine used to get the job done. You don't know how a search
engine like www.google.com works, but you know if you type in the right keywords,
you’ll get the information you want.

Providers were created by Microsoft and others to perform certain tasks. When you
want to write a letter, they are the pen. When you want to turn a screw, they are the
screwdriver. When you want to drive a car, they are the engine. If you want a data
class to return data, a provider must be used.

Basically what you need to understand about providers at this point is this: the provider
is the middle man between WMI and SMS.

Providers are described in more detail later in this and other chapters. You didn’t really
think I’d just leave you hanging like that, did you?

SMS_def.mof Structure Recap

In the first two chapters, the SMS_def.mof file was described as having two main
sections. The smaller top section contains “stuff” that was to be largely ignored, with
the significantly larger bottom section containing reporting classes.

The top section consists of lines to create the ro0/\ CIMT 2\ SM.S namespace (if it
doesn’t already exist), and lines to register a few providers. Again, providers are the
“tools” that are used by the hardware inventory to retrieve the requested data. Since
these lines do not need to be modified, they can, once again, can be ignored.

If you scroll through the rest of the MOF, you’ll see the reporting classes with fields
that can be enabled by simply changing False to True. Unfortunately, this is when
things start to get complicated.

You'll recall that reporting classes are used to retrieve data from data classes. If the
reporting class for an existing data class is not in the default SMS_def.mof file then you
can create a teporting class in the r00/\ CIMT 2\ SMS namespace so that the hardware
inventory will collect the information you're after. MOF editing can become
complicated when the data you are looking for is not already in a default class and you
must create your own. Aren’t you lucky that this guide exists?

30

START TO FINISH GUIDE TO MOF EDITING

Basic MOF Modification Steps

Step 1: At the end of the stock SMS_def.mof; create a big block of comments to
signify the end of the default section, and the beginning of your own. This will help
you to avoid accidentally deleting or modifying anything that you did not create.
Speaking of deleting things, it’s almost never a good idea to completely delete default
sections of the MOF. While the sections may not seem useful to you, those data
classes were entered into WMI for some reason and deleting them may adversely affect
the client system adversely.

So, following step 1, your initial comments should look something similar to the below
excerpt:

/I THIS IS MY STUFF
/I Written by: <insert name, if you dare>
/I Date:

Step 2: Open your toolbox and pull out the tool you intend to use. In other words,
register the provider you intend to use to retrieve the data if it’s not already listed in
your SMS_def.mof. This step is primarily for SMS 2.0. Check the declarations (top
section) of your SMS_def.mof to see if the provider you're trying to use is already
registered in any case.

Step 3: Define the data class that the provider will query to retrieve the data.

Step 4: Define the reporting class that will tell the hardware inventory agent which
fields in the data class you would like to see reported.

The basic premise is fairly simple: register the tool you want to use, define the data
class that the tool will query, and define the reporting class so that the proper fields are
collected from the data class.

Do I always have to define the data class before the reporting class? Nope. Step 3
and Step 4 are interchangeable. The reporting class ¢z be defined prior to the data
class because when the MOF is compiled, the classes are simply created in their
respective namespaces in the local WMI. As long as they share the same class name
(which they must), the order in which they are created does not matter.

I prefer to define the data class prior to creating the reporting class. Logically, it makes
sense to me to define what the data class should look like before deciding what pieces
of that class I actually want reporting to SMS.

Following the steps above, a pseudo-MOF addition would look like this:

31

START TO FINISH GUIDE TO MOF EDITING

//My Block of Code

#pragma namespace (""\\\\.\\Root\\CIMV2'")
<providers are registered>

<data class "'TravelMode' is defined>

#pragma namespace ("\\\\.\\root\\CIMV2\\SMS)
<reporting class for "TravelMode" is defined>

In English, this says: "Inside the 700/\ CIM172 namespace, register a provider and define
a class called "TravelMode". Switch to the 0\ CIMT 2\ SMS namespace and define a
reporting class for the "TravelMode" class."

As you can see, providers are registered and data classes are defined in r00/\CIM12,
and reporting classes are defined in 00\ CIMT72\SMS. To tell the compiler where the
classes should be defined, the #pragma namespace line is used.

The code above is a good example of what I like to call a “block of code”. All relevant
information pertaining to the TravelMode class is located in one area of the MOF.
Should I want to remove this class, I can either comment this section with /* before it
and */ after it, or just delete the entire section. Either way, the class would no longer
be seen by MOFCOMP when the SMS_def.mof file is next compiled.

What if I want to pull data from somewhere besides root \CIMV2?

Ahbh, the hundred dollar question! There are many namespaces other than
r00A\CIM12 and roo/\ CIMT7"2\SMS. Normally, SMS is pretty happy with collecting
data from those two namespaces, but if you're like me, and I know I am, then you’ll be
interested in extending your inventory capabilities beyond these standard locations.

If you’re still running SMS 2.0 then you’re going to have to do it the hard way. In this
case, the hard way being the use of the WMI view provider to mirror the information
to the 700/\CIM172 namespace so it can be accessed by the hardware inventory.

The View Provider is explained in Chapter 8.

The SMS 2003 Advanced Client’s inventory agent can access namespaces other than
r00/\CIM12 by using a teporting class qualifier. When extending your MOF for a class
not included in the normal ROOT\CIMI 2 namespace, just slap the name of the
namespace you want to get to under the “normal” reporting class block of code before
all that TRUE and FALSE stuff, as in the example below that inventories Internet
Explorer information. The namespace qualifier is highlighted in red below.

32

START TO FINISH GUIDE TO MOF EDITING

#pragma namespace (“\\\\.\\root\\CIMV2\\SMS”)

[SMS_Report (TRUE), SMS_Group_Name ("Microsoft IE Summary"),
SMS_Class_ID ("MICROSOFT|IE_.SUMMARY/|1.0"),

Namespace("\\\\\\\\\\\\root\\\\CIMV2\\\\Applications\\\\MicrosoftIE")]
class MicrosoftlE_Summary : SMS_Class_Template
{

[SMS_Report (TRUE)] string Build;

[SMS_Report (TRUE)] string IEAKInstall;

[SMS_Report (TRUE)] uint32 CipherStrength;

[SMS_Report (TRUE)] string Version;

[SMS_Report (TRUE),Key] string Name;
2

Big ups to Kan Mongwa for opening my eyes to this technique and pointing out the
100N\ CIM 2\ Applications\Microsoft]E namespace.

This is also how you can get to the yummy morsels of information about those applications
that have their own WMI Providers, such as Microsoft Exchange, SQL Server, and 11S.

Why does your MOF syntax appear different from my default SMS_def.mof?
To MOFCOMP there is no difference in the format I’ll use, and that of the standard,
Microsoft format shown. The two examples below illustrate what I mean. First, I'll
show you the default format of the SMS_def.mof:

[SMS_Report (TRUE),
SMS_Group_Name ("Physical_Memory"),
SMS_Class_ID ("MICROSOFT|Physical_Memory|1.0")]
class Win32_PhysicalMemory : SMS_Class_Template
{
[SMS_Report (TRUE) 1
string BankLabel;
[SMS_Report (TRUE) , SMS_Units("Megabytes") |
uinté4 Capacity;
[SMS_Report (TRUE)]
string Caption;
[SMS_Report (TRUE)]
string DevicelLocator]];

;

.. and then our customized format:

33

START TO FINISH GUIDE TO MOF EDITING

[SMS_Report (TRUE), SMS_Group_Name ("Physical_Memory"),
SMS_Class_ID ("MICROSOFT|Physical_Memory|1.0")]
class Win32_PhysicalMemory : SMS_Class_Template

{
[SMS_Report (TRUE)] string BankLabel;
[SMS_Report (TRUE) , SMS_Units("Megabytes")] uint64 Capacity;
[SMS_Report (TRUE)] string Caption;
[SMS_Report (TRUE)] string DevicelLocator[];

;

I use this format to help differentiate between the original MOF and our customized
sections, and because it makes the MOF shorter and easier to read. You can use
whatever format you wish.

Hey, what’s that crazy ‘SMS_Units(“Megabytes”)” section in your example all
about?

Bonus points to you for seeing that! In order to format WMI information to make it
easier to understand and view we can use the SMS_Units(“Megabytes”) line to convert
that uint64 (unsigned 64-bit integer) value into megabytes.

This information is actually located in the default SMS_def.mof. Below are the
possible data conversions you can make from the raw WMI inventory data into
something that SMS can either read, or just to make it easier for us humans to see what
is going on:

e Kilobytes, divides integer value by 1024

e Megabytes, divides int value by (1024 * 1024)

e HexString, converts int value to hex characters,
(i.e: hex value OA1 converted to string "0xA1")

e DecimalString, converts int value to decimal string
(i.e: value 123 converted to string "123")

e Seconds, divides int value by 1000

e DateString, converts value to interval string
(i.e: DateTime value "00000008061924.000000:000"
turns into string ""8 Days 08:15:55 Hours")

Confusing? Here’s a quick example. Figure 3.3 is the resource explorer view for the
Win32_PhysicalMemory class that inventories physical RAM chips. Without putting in
the SMS_Units(“Megabytes”) line for the uint64 data type field Capacity:

34

START TO FINISH GUIDE TO MOF EDITING

Figure 3.3

File Action Wew Help
€ | Bm & |2

d BankLabel | Capacit | Caption | CreationClassHame | Devic. .. | FarmFactor | MemoryT... | PositionInRow | Speed | Tag /

536,870,912 Physical Memary Win32_PhysicalMemary DIMM_1 & 17 1 400 Physical Memory 0

536,570,912 Physical Memary Win32_PhysicalMemary DIMM_2 & 17 1 400 Physical Memory 1

536,570,912 Physical Memary Win32_PhysicalMemary DIMM_3 & 17 1 400 Physical Memory 2

.Q 536,570,912 Physical Memary Win32_PhysicalMemary DIMM_4 & 17 1 400 Physical Memory 3
el [5]

Adding SMS_Units(“Megabytes”) to Capacity field like so:
[SMS_Report (TRUE) , SMS_Units("Megabytes")] uint64 Capacity;
Gives you the resulting Capacity information displayed in Figure 3.4:

Figure 3.4
File Acion View Help
== @

BankLa... | Zapacit: | Caption | CreationClassMame | Devic,.. | FUrmFactUrl MemoryT... | PositionInRow | Speed | Tag /

512 Physical Memory Win3Z_PhysicalMemory DIMM_L & 17 1 400 Physical Memary 0
512 Physical Memory Win3Z_PhysicalMemory DIMM_Z & 17 1 400 Physical Memory 1
512 Physical Memory Win3Z_PhysicalMemory DIMM_3 & 17 1 400 Physical Memory 2
512 Physical Memory Win32_PhysicalMemory DIMM_4 & 17 1 400 Physical Memary 3

512 MB is a lot easier to understand than 536,870,912 Bytes, right?

35

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

MOFCOMP.EXE, which comes with WMI, is used to edit, delete and insert
classes into the local WMI repository based upon information stored in the
MOF file.

If there is a syntax error in the MOF file, MOFCOMP will stop compiling at the point
that it encounters the error in the MOF.

Compiler status messages can be found in the hinv.log for legacy clients or the
inventoryagent.log for advanced clients.

There are two ways to add comments in your MOF:
1. Place two /'s (//) in front of your comments on a single line
2. Place /* in front of the start of a block of comments and end your comments with

%/,

Data stored in namespaces other than 700/ \CIM1/2 ot roof\CIM12\SMS can be
accessed by using a view provider for legacy clients or a namespace qualifier for
Advanced Clients.

Namespace: namespaces are containers used to hold class and instance data.

Reporting Class: reporting classes define the information within data classes targeted for
inventory.

Data Class: data classes either contain the inventory data you're after or point to its
location.

Instance: Instances are generic class definitions.

Provider: Providers are the "tools" used to access information stored in WMI.

36

START TO FINISH GUIDE TO MOF EDITING

Chapter 4.

Introduction to WMI Manipulation
"There are things known and there are things unknonn, and in betveen are the doors.

— Janz Morvison

SMS_def.mof syntax, and compiling. One thing that always seems to pop up
with these is WMI. Understanding the relationship between WMI and SMS
hardware inventory is ¢rtical to your success as a MOF editor.

S o far we’ve covered a lot of the basics of hardware inventory, MOF files,

Grasping the concepts of how WMI is structured, and how it is accessed and
manipulated by SMS is the door to the Kingdom of the MOF Master ...and I've left it

open for you.

The Basic Structure of WMI

Remember from Chapter 1 when I first introduced you to WMI? I said that WMI,
Windows Management Instrumentation, was the Windows implementation of WBEM
or Web-Based Enterprise Management initiative. Well, what the heck does that mean
you’ve probably been wondering.

WMI (Windows Management Instrumentation) is basically a tool used to gain access to
and/or modify the data stored in Common Information Model Version 2 (CIMV2)
repository on a system. This makes the CIMV2 Repository the “home” for all that
interesting data. WMI is like a kind of address book that the SMS_def.mof uses to
navigate around the neighborhood searching for those objects that you’ve chosen to
inventory.

A complete explanation of CIMV2 is beyond the scope of this book, so bear with me
if you’ve noticed the over-simplification here. Instead, I'll be focusing on the elements
of WMI that are important to hardware inventory and the SMS_def.mof.

WMI is organized into namespaces (classes and instances) that contain more
namespaces (subclasses and instances). Think of the WMI repository as a file cabinet,

37

START TO FINISH GUIDE TO MOF EDITING

or a computer’s file and folder structure. There are root folders which, in turn, contain
subfolders full of significant information. You may remember seeing a line such as the
one below a few pages back:

#pragma namespace (“\\\\.\\root\\CIMV2\\SMS”)

Does that line make a little more sense now? Remember, the #pragmna namespace part
tells SMS to switch namespaces. The ro0/\ CIM12 namespace is where most of the
data is located (or instances of classes are to be technical), and the o\ CIMT"2\SMS
namespace is where SMS stores everything it wants reported in hardware inventory—
the reporting classes and instances. So in the #pragma namespace example above,
MOFCOMP is being told to switch to the SMS namespace in order to store some vital
piece of information.

Continuing the computer directory analogy, and to go back in time for some people,
I’ll compatre this to a simple DOS command shown in Figure 4.1:

Figure 4.1

er CIAWINDOWS\system32\c...

Cisrootscimw2*cd sms

Cisrootscimu2ssms >

Didn’t help? OK, how about a picture depicting the namespace organization such as
that displayed in Figure 4.2?

Figure 4.2
Root Think of the root as...well ... the root, the CIMV?2 as the
,—-—} CIMV2 repository containing all the significant information
about the system, or data classes, and the SMS folder as
CIMV2

containing everything you want SMS to report on, the

/_,JI reporting classes.
SMS

OK show of hands, who likes the folder structure view better? All right, I'll use that
from now on when I want to illustrate the WMI structure. I'm still partial to the
command line, but I know I'm part of a dying breed.

38

START TO FINISH GUIDE TO MOF EDITING

You may notice that I've only shown the CIMV2 and SMS namespaces above. Does
that mean these are the only two namespaces SMS is capable of peering into? No way!
Sometimes the data you want to see is in a class not included as a root class within
CIMV2. Remembet, the r0/\ CIM1 2\ SMS namespace is used to store the
information you’ve tagged for reporting, but there are other sub classes that need to be
considered for inventorying as well.

Generally speaking, you will use the “normal” CIMV2 Win32 classes for 99% of your
SMS_def.mof editing, but I wanted to make you aware of the importance of the
different namespaces within WMI. We’ll talk more about this later; I just didn’t want
you to get tunnel vision on the r90/\ CIM12 and roo\CIM1/"2\SMS namespaces at this
point.

WMI Data Classes

Data classes are the meat and potatoes of hardware inventory and for modifying the
SMS_def.mof. Sometimes you may prefer fish, or registry information, but for the
most part you'll spend your time making MOF edits focused on data classes.

Remember, WMI namespaces are full of classes, which in turn, are full of subclasses,
and both contain instances. ..that’s about as clear as mud, right? I remember reading
something like that once when I first started learning about MOF editing so I'll
illustrate this here in Figure 4.3—a picture is worth a thousand words, right?

Figure 4.3
;_JI WMI Classes
WMI Sub
WMI Classes Classes Data Classes
;_J' !_J' Win32_Fan
Win32 Classes Hardware Classes Win32_HeatPipe
) Win32_Keyboard
,.---JI Win32_PointingDevice
Operating System Win32_Refrigeration
FH_._.J' Win32_TemperatureProbe
. Installed Applicati
,_..--JI nstalled Applications Instances, A.K.A.
- Data we’re after
Registry Classes Win32_PhysicalMemory Tag="Physical Memory 0"
Tag="Physical Memory 1"

Gd

System Classes

39

START TO FINISH GUIDE TO MOF EDITING

Now when you want to see how many RAM chips are in a system you can expertly
expound upon accessing the CIMV2’s Win32 Hardware Classes in order to retrieve the
instances contained within the Win32_PhysicalMemory data class! See, not only is this
book informative, it offers you the opportunity to speak in a different language!

If this still makes no sense to you, remember where this picture is and come back to it
later. I’'ve purposely used the Win32_PhysicalMemory data class as an example
because you will be seeing it again later on.

Obviously, that diagram barely scratched the surface of WMI classes, but rather than
make the rest of this book one big picture full of fun arrows and pretty boxes, I'll just
refer you to the below links if your thirst for WMI classes has yet to be quenched:

A list of all WMI classes:

://msdn.microsoft.com/libra
us/wmisdk/wmi/wmi classes.asp

A list of all Win32 classes:

http://msdn.microsoft.com/library/default.asp?url=/librarv/en-
us/wmisdk/wmi/win32 classes.asp

A list of all Win32 hardware classes:

://msdn.microsoft.com/library
us/wmisdk/wmi/computer system hardware classes.asp

Go ahead and check those websites out. It’s good to be familiar with these sites,
because if you click on a class of your choice you’ll notice that the class is broken down
for you. Each property is meticulously defined, including its name, the type of data for
each of its properties, and even a breakdown of what those crazy values mean that the
data represents. You'll also notice one or two properties with a line that says “Qualifiers:
Key”.

Key Fields

Hear me now, believe me later, if you do not propetly identify the key fields for your
reporting classes you are asking for setious trouble and probable loss of sleep.

Key fields are used by WMI and SMS to identify individual objects within arrays
among other things. Think of the physical memory class again. The odds are pretty
good nowadays that a system is going to have more than one RAM chip. In order to
differentiate the queried data between the chips the key field, or fields, for the class are
referenced.

40

START TO FINISH GUIDE TO MOF EDITING

When you enable a new reporting class in your SMS_def.mof and at least one client
conducts a hardware inventory, the data and history tables—among other things—are
created in your SMS database to store the newly inventoried information. The key
fields are identified at that time for the new class table in the SQL Database. These key
identifiers for the table cannot be updated by modifying your SMS_def.mof in the
future. Let me say that again for effect: these ey identifiers for the table cannot be updated by
modifying your SNIS_def-mof in the future.

In case you skipped checking out the websites eatlier, here’s a link to the
Win32_PhysicalMemory class so that you can see those key qualifier lines for yourself:

://msdn.microsoft.com/library
us/wmisdk/wmi/win32 physicalmemory.asp

If you clicked on that link then now you can also see what I meant by the value data
too. Notice that a FormFactor value of 8 means DIMM. This comes in handy when
you’re perusing through your SMS site data at a physical memory report and your boss
asks you what they heck 8 means there!

If you are creating your oz class from scratch, you can choose whichever field you
think is most likely to be unique as your key field. If you think there are two fields that
must be unique to identify the differences between two objects, then make a couple of
the fields key fields. This is called a compound key.

Using Tools to Access WMI

There have been many days when I’ve wished I could just take a stick and bang
inventory data out of my SMS Server, but until Microsoft Pifiata Server 2027 comes
out we’'ll all have to do it by utilizing applications or scripts that access WMI
information and return it to you in some meaningtul format.

It seems that everyone has a favorite for taking a stab at WMI programmatically. I
think the easiest, and since it’s installed with WMI, the most obvious to use is the
dexterous WBEMTEST.EXE, or the Windows Management Instrumentation Tester
to be precise.

WBEMTEST

I'll mention a few other methods to access WMI information, but since you already
have access to WBEMTEST by default on WMI enabled systems I’ll go into deeper
detail on it than the others.

Accessing WBEMTEST is simple. Just click on the Start button, click Run, type in
WBEMTEST and hit OK. Once all that is accomplished, you are rewarded with the
following eye-catching screen in Figure 4.4:

41

START TO FINISH GUIDE TO MOF EDITING

Figure 4.4

Mamespace:

IwbemnServices

Windows Management Instrumentation, Tester

E it
Help

Edit Contest. . |

Method Invocation Options
i

o~
=

-

Batch Count [enunn. oty

[Enable All Privileges
r
=

Timeout [mzec., -1 for infinite]

Next, you'll want to click on Connect to get the party started. Which gives you the

resulting screen displayed in Figure 4.5:

Figure 4.5

Connection:

Cancel

Uzitg: | I'wbemlLocator [Namespaces)

[

Returning: |IWbemServices

Credentials

=]

User: |

Paszword:

Authority:

Locale

Impersonation level
" ldentify

' |mpersonate

" Delegate

How tointerpret empty password

{¢ MULL " Blank

Authentication level
™ Mone * Packet
(7 Connection © Packet integrity

" Cal " Packet privacy

42

START TO FINISH GUIDE TO MOF EDITING

Now, remember the namespaces SMS likes to look in? Type over rof\defanlt with
r00\CIM172\ and click Connect again.

Figure 4.6

Windows Management Instrumentation Tester

Mamespace:

roathzimye Exil
Help

lwhbemServices

Enum Clazses... | Enum Instances... | Dpenﬂamespace...| Edit Contest... |
Create Class... | Create Instance... | Guem... | Create Refresher... |
Open Class... | Open Instance. .. | Motification Quem... |
Delete Class... | Delete Instance... | Ezecute Method... |

Method Invocation Options

" Agmchronous [Enable &l Privileges
" Synchronous [Use Amended Qualifiers
* Semizynchronous [Direct Access on Fead Operations

[Use Mextdayne [enum. only)

10 Batch Count [enunm, only) 5000 Timeout [msec.., -1 for infinite]

Now you’re back from where you started! Just kidding. Notice now that there is
actually a namespace listed under Namespace (r00/\ CIM172) and the IWbemSetvices
buttons are enabled.

Let’s play with the buttons. Click on Enum Classes and check the recursive radio button
as so:

Figure 4.7

Superclass Info

Enter superclazs name
| Cancel

" Immediate anly

Click OK and Whammo! Here comes the WMI data from your system right to your
desktop.

I'm planning to be more spontaneous in the future, but for right now I'm going to
stick with the Win32_PhysicalMemory class. To see the Win32_PhysicalMemory
information via WMI simply scroll down the list of classes until you see the physical
memory section:

43

START TO FINISH GUIDE TO MOF EDITING

Figure 4.8

Query Result
Top-level classes

924 objects | maw batch: 10 \Done

YWind2_PefRawData_Topip TCP [win32_PerfRawData) ~
YWind2_PeffRawData Tepip UDP [win32_PerfRawbata)
WwindZ_PerfRawD ata_TemService_TerminalServices [Win3d2_PerfR awD ata)

YWin32_PelfRawData_TermService_TeminalServicesSession [wfin32_PerfRawDa
Win32_F'elfHawD ata_WBSVC_WeI_JS ewice [Wind2_PerfAawD ata)

Physicaltedia [CIM_PhysicalMedia
Phusi om [Tk icalMemaomnm)
Wina2_PhysicalMemonsdiray [CIM_PhysicalPackage)
YWind2_PhysicalMemomlocation [CIM_PackagedCompaonent]

WindZ_PingStatus I}

Wind2_PHPAllocatedResource [CIM_AllocatedR esource]

WwindZ_PrPDevice I} A

Add | Delete |

Double clicking on the Win32_PhysicalMemory Class name yields you the next
resulting screen shown in Figure 4.9:

Figure 4.9

Object editor for Win32_PhysicalMemory

Gualifiers
dynamic Cit_BOOLEAM TRUE A
Locals CIM_SINTZ2 1033 [0x409) Save Object
provider CIM_STRING Clbdtin32 2
o Clbd ETRIMG IEAETCRO2.700M A 1M AM
£ > Shaow MOF
AddQualifier | EditQualfier | Delete Qualifier | Superclass
Properties [Hide System Praperties [Local Only B
BankLabel CIM_STRIMNG <rullx ~
Capacity Clt_UINTE4 <rullz Inst
Caption CM STRING <nuls rElanGes
CreationClazsMame Clt_STRIMNG <rullz -
Datawidth CIMTOINTIE <nulls Fieiitzsh Oafeet
Description CIM_STRIMNG <rullx 3
| P e Cled CTOIRIT el
¢ Y Update type
Add Property E dit Property Delete Property " Create anly
P
Methods Update anly
+ Either
&+ Compatible
" Safe
¢ » " Force
éddMethod | Editethod | Delete Mathod |

From here you can scroll down the list of properties and see the data type for each

field within the class.

These fields are also defined on the web page for the individual class definitions on
MSDN’s website.

44

START TO FINISH GUIDE TO MOF EDITING

One thing you'll notice about these properties, though, is that nowhere does it say
which fields are ‘key’ fields. To see which properties have the key qualifier using
WBEMTEST, you have to double click on each property and look for a resulting
screen as Figure 4.10 illustrates:

Figure 4.10

Property Editor

Property Name Clazz of arigin Save Property |
| | Cancel

Type
| J [Aray

Yalue (& WULL " Mot NULL

Quaslifiers
] 7 Indexed 7 Mat HULL " Mamal

N [CIM_Fey CIM_BOOLE&M TRUE - &dd Qualifier
CIMTYPE CIM_STRING string
t appitgString: CIM_STRIMNG | CIM_FLAG_ARRAY Dielete Qualifier
taxLen CIM_SINT32 256 [0x100)

Override CIM_STRING Tag v E dit Clualifier

This can be quite tedious to do for classes with many, many properties to check, so use
this as a starting point and then check, and double check, the field information for the key
fields from the class website.

Now we have seen the class and the reporting fields, let’s see what is actually stored on
the system for the class. Click on the ‘Instances’ button on the right side of the
Win32_PhysicalMemory object editor screen and you’ll be presented with Figure 4.11
(or something similar, of course):

45

START TO FINISH GUIDE TO MOF EDITING

Figure 4.11

Query Result
Inztances of Wind2_Physicalemary

2 objectz | max. batch: 2 Done

Win32_Phusicalemon. T ag="Phyzical Mermom 0"
Win32_Physicaltdemon. T ag="Physical Memory 1"

From these results you can tell there are two physical memory chips installed on my
current machine. So I'm getting something anyway. Don’t be despondent if a ton of
cool information doesn’t immediately present itself to you. The information stored in
WMI is hardware vendor specific. In other words, if the RAM manufacturer decided
not to include this information it won’t be there. Conversely, running this same query
on another machine may yield more information than you even want.

If you’re really bored and decide to count the fields in the Win32_PhysicalMemory
Class you'll see that there are 30 different reporting fields possible. You can use
whatever tool your heart desires to view the information stored in those fields and then
include only those fields you want SMS to report on in your SMS_def.mof
modification Remember, if you want, you can add them all, and just set the report
qualifier to FALSE for the ones you’re not interested in.

The main idea here is to verify that this class actually holds the information you’re
looking for in general. I like to use this method to find the data types and fields for
making my own reporting classes.

So now we've used WBEMTEST to connect to the 70/\ CIM1”2 namespace, found
the Win32_PhysicalMemory Class, viewed the data type information for the fields and
enumerated the instances of that class on a local machine. These same actions can be
made with the other programs we’ll talk about next.

CIM Studio

CIM Studio is more complex than WBEMTEST, and designed with developers in
mind. It’s really a set of four web page files (studio.htm, studiobanner.htm,
calssnav.htm, and editor.htm) that interact with the CIM repository on a system via
WMI.

46

START TO FINISH GUIDE TO MOF EDITING

For those who desire a deeper look into WMI, download the WMI Administrative
Tools containing the CIM studio:

http:/ /www.microsoft.com/downloads/details.aspx?FamilvyID=6430£853-1120-48db-

8cch-f2abdc3ed314&Displavl.ang=en

Using CIM Studio you can display a tree view of the CIMV2 repository of a system,
view details on classes and instances, and edit that information.

By drilling down the tree view of the CIMV2 repository on the left pane of CIM
Studio you can select the class you want to view. Clicking on the class gives you a
detailed properties view in the results pane on the right side. Something worth noting
here is that when you view the properties of the class, the key fields are identified by an
image of a key in the results as seen in Figure 4.12:

Figure 4.12
2 Windows Management Instrumentation Tools : WMI CIM Studio - Microsoft Internet Explorer
File Edit Miew Favorites Tools Help ,"
<) </ \ﬂ @ _l\J P) Search ‘»:‘\'/ Favorites {‘} -] - _]
Address |@ C:\Program Files\WMI Tools\studio.htm V| Go Links *
WMI CIM Studio H o @
Classes in: |(RaoBIRE: - @ | ol ¥) Win32_PhysicalMemory @| | <}:|| | |||E§4‘| ‘?|
-] % —ApstenClass e’ Froperties l Methods] Associations
| __ SystemSecurity
+-[] EJ _ SecurityRelatedClass i Properties of an object are values that are uzed to characterize an instance of a
[| _P4RAMETERS class.
+-[] MotifyStatus
Y [
4] [MSFT_w/miCoreDbject | {f,l:am . |bT”’|e |V°"'“f —
| [fl Msft_\wmiProvider_Counters — emavane oolean <emply
O CIM_StorageEmor || @D Replaceabls boolean <emply
=] EJ CIM_ManagedSystemE lement || @D SenalMumber string <emply
=[] [CIM_PhysicalElement @D SkU string <emply
=[] [CIM_PhysicalCompanent go Speed Lint32 <emply
O [fl Win32_OnBoardDevice 1 @D Status e e
+-[7] 1] CIM_PhysicalMedia - - L e
=[] [[1) CIM_Chip || %@01 || string <emply
=[] [F] CIM_PhysicalMemary || A& Totalwidth Lint16 <emply
O [fl Win32_Phyzicalkemaory k=] TypeDetail uint16 <emply
O EIM_Phys!caILlnk A Version string <emply
=0 @) E:m-g:” Sfca:gm:ecm' __CLASS stiing Win32_
* D EJ - wHEalackage v 1 @il MHCDnATIOR T Arran |
+.1 [F] CIM LoaicalE lement <
< ¥
@ Done j Iy Computer

In my opinion, CIM Studio is great for advanced scripters or developers, but not as
user friendly as some of the other options I’ll talk about next.

Scriptomatic Version 2

For those who are into a little more glamour and pizzazz, there’s the Microsoft
Scripting Guys’ GUI answer to WBEMTEST—The Scriptomatic (version 2) which is
an .hta application and always a crowd favorite. Not only does the Scriptomatic allow
you to view WMI information, it also allows you to create scripts to access the

47

START TO FINISH GUIDE TO MOF EDITING

information in several different scripting languages with varying output formats. This
nifty tool even allows you to query remote machines.

To download the Scriptomatic, just navigate to the link below:

h www.microsoft.com/downloads/details.aspx?FamilyID=09d{c342-648b-4119-

b7eb 783b0f7d1178&Displaylang=en

I'won’t go into as much detail on the Scriptomatic as I did on WBEMTEST for a
couple of reasons. First, it’s much more intuitive and easy to understand if you’re
interested enough to download and play with it. Second, I just want to familiarize you
with the different tools available so we can get on with the actual MOF editing in the
next chapters—this book would never end if I described each tool in painful detail.

By double clicking on the downloaded ScriptomaticV2.hta file you are presented with
something similar to Figure 4.13. Just by looking, you get a hint as to how easy it is to
work with it.

Figure 4.13

Ml Scriptomatic Version 2.0 by The Microsoft Scripting Guys

Wil Mamespace Wuhil Class
[rooticmvz Bl cciect v

Cltv2 | Wbl Source | Open it

Language

“BScript
Perl

JEcript

DT Y W

Python
Output Format
Command
Prompt
Plain Text
HThL

Excel

. e & @ O

HML

Update Script
Load From File

Target Computers (Comma-celimitec)

Let’s take a quick look at all those handy options the ScriptomaticV2 offers you. This
tool is aimed mainly at I'T Professionals who want a quick and easy way to write WMI-
based sctipts.

48

START TO FINISH GUIDE TO MOF EDITING

Take notice of the great variety of scripting languages and output formats available to
you. It would take considerably longer to learn all the scripting languages available here
than the second or two it takes to decide which options you want to view the WMI
information with here.

So by accepting the default WMI Namespace of mo/\ CIM 12 and selecting our favorite
WMI Class—Win32_PhysicalMemory again—we get something like Figure 4.14. We
don’t see any WMI information; we see a script! Because I've left the default scripting
language set to VBScript, it’s a VB Script written on the fly to access WMI. Hey, that
thymed! Anyway, the scripting capability alone can make this little utility worthy of
future study:

Figure 4.14

Ml Scriptomatic Version 2.0 by The Microsoft Scripting Guys

Wil Mamespace Wuhil Class

|rnm\CIMV2 j |Win32_PhyslcalMemnry ﬂ
Clvtv2 | WM Source | Open | Save it
On Error Resume et ~
Language
Const whemFlagReturnimmediately = &h10
Const whemFlagF orwardOnly = $h20
VBSeript o
arrComputers = Array(".") ~
For Each strComputer In srrComputers (sl
WiScript. Echo JScript r
WWScript Echio
WScript. Echo "Compter: " & strComputer Python i
WScript.Echo " -
Set chivhiService = GetObisct"winmemts: ' & strComputer & "rootiCiy2") B
Set coltems = obpWhIService ExecGuery("SELECT * FROM Win32_PhysicalMemory" "WiaL", _
whemFlagReturnimmediately + whemFlagForwardOnly) CETETE) 5
v
Prompt

Far Each okjtem In coltems

WiScrigt Echo "BankLabel & objtem BankLabel Plain Text e
WSoript Echo "Capacity: " & objtem. Capacity HTML ~
WScript Echo "Caption: " & objttern Caption

Wcript Echo "CreationClassName: " & objttem CreationClasshlame Excel)
Wcript Echo "Datalicth: " & obitem Datalicth

Weript Echo "Description: " & objitetn Description HML .
Waoript Echo "DeviceLocator: " & objtem. Devicelocstar

Wacript Echo "FormFactar: * & objtem FormFactor v

Target Computers (comma-delimited):

WJEFFPR
Update Script
Load From File

You can play with the other buttons at your leisure, but right now I'll just accept the
default to execute the script with output going to the command prompt. You may
notice some familiar information here in Figure 4.15:

49

START TO FINISH GUIDE TO MOF EDITING

Figure 4.15
WINDOWS\system32\cmd.exe

: Physical Memory
~z DIMM_f

InterleaveDataDepth: @
InterleavePosition:
Manuf acturer:
MemoryType: B

Model:

Mame: Physical Memory
OtherldentifyingInfo:
FartNumbher:
FositionInRow: 1
FoweredOn:

Removable:

You see all the fields and whatever information the Scriptomatic was able to get via
WMI from your system. You could even change the name of the queried system from
the local system to poke around your cubicle farm and check everyone’s RAM setup if
you get bored.

The Scriptomatic is easy to use, extremely powerful, and versatile. It allows you to
quickly query a system, locally or remotely, and makes WMI scripting as easy as
selecting a class and pressing run. Download it, run it, and have fun with it. You
won’t be able to stop for a while so I recommend setting aside a good bit of time
before running it for the first time. If you are interested in writing WMI scripts this is
also an excellent learning tool.

WMI Code Creator Version 1

Another good utility for accessing WMI is called The WMI Code Creator Tool,
Version 1, is basically the Scriptomatic on steroids. This new tool allows you to
generate scripts like the Scriptomatic, but the languages it uses are VBScript, C#, and
VB NET.

Itisa relatlvely small download for such a powerful utility and it can be found at:
ht www.microsoft.com/downloads/details.aspx?tamilyid=2CC30A64-EA15-

4661 8DA4-55BBC145C30E&displaylang=en

Not only can the tool be run against a local system or remote system, it even allows
you to target a group of remote systems to run on simultaneously! Finally! A way to
inventory the entire cubicle farm with one click!

Again, just like the Scriptomatic, the WMI Code Creator Tool is an excellent learning
tool for writing WMI sctripts, this time in C# and VB .NET, as well as regular
VBScripting.

50

START TO FINISH GUIDE TO MOF EDITING

One extremely handy feature is that the WMI Code Creator Tool allows you to browse
namespaces rather than having to know where they are as WBEMTEST requires as is
demonstrated in Figure 4.16:

Figure 4.16

™ wWMI Code Creator
File Codelanguage Target Computer Help

Query for data from a Wil class | Execute a method | Feceive an event | Browse the namespaces on this computer

Namespace: raot\CIMY2 ~| Generated Code:

430 clagses !dynam\c or tatic] found.

Classes [dynamic
or static]:

_Fh Ay
Resuls: 30 proper|*in32_PhysicalldemonLocation
Select the propert] *in32_PingStatus
"win3d2_PHNP&locatedR esource

gankLahE‘ 'win3Z_PrPDevice
EaDaC‘L‘v’ "win32_PnPE nlity
aplion win32_PrPSignedDriver

CreationClasshar "wind2_PnPSignedDriverCIMDataFile
Datatu/idth Win32_PointingDevice

Description "win32_PortableBattery
Devicelocator "win32_PortConnector

FomF actor win3Z_PortResource
win3dZ_POTSModem

Wwin32_POTSModemToS eralPart
Search for b/in32 Printer

"wind2_PrinterConfiguration
Select one value "win32_PrinterContraller
win32_PrinterDiriver
win32_PrinterDriverDll
"win32_PrinterS etting
win32_PrinterShare
“win32_Printob
‘win32_Process
wind2_Processor
"win3Z2_Praduct
"wind2_ProductCheck.
win32_ProductResource
"win32_ProductS oftwareF eatures
"win32_ProglD Specification
"win3Z2_ProgramGioup

Just select the class you want to query, click the Execute Code button and Viola! You
get a Malaysian Leaf Frog ... oh wait, that’s not it. You get the
Win32_PhysicalMemory information from your system, of course. This time, as you
may notice in Figure 4.17, the information has been retrieved via VB NET instead of
regular VBScript:

Figure 4.17

\WINDOWS\system32\cmd.exe

Microsoft (R> Uisual Basic .NET Compiler version 7.10.68601.4
for Microsoft (B> _NET Framework version 1.1.4322.2832
Copyright <C> Microsoft Corporation 1987-2882. All rights reserved.

Capacity: 536878912

Caption: Physical Memory
CreationClassMame: Win32_PhysicalMemory
Datallidth: 64

Description: Physical Memory
Devicelocator: DIMM_A

InterleaveDatalepth: B
InterleavePosition: @
Manuf acturer:
MemoryType: B

Model:

Mame: Physical Memory
Otherldentif yingInfo:
PartMumber :

51

START TO FINISH GUIDE TO MOF EDITING

Another handy feature of the WMI Code Creator is that it allows you to query the
fields in a class and get a detailed report on it by simply clicking on the Browse he
nanmespaces on this computer tab.

You can retrieve detailed class and property definitions and values, including qualifiers
such as key as shown next. It’s still not a replacement for checking the website in my
opinion, but awfully close. Most of the information retrieved this way is extremely
similar to that found on the MSDN class website.

Figure 4.18

[Wi Code Creator
File CodeLanguage Targek Computer Help

Duery for data from a Wil class | Execute 2 methad | Receive an event | Browse the namespaces on this computer |

an found. pi
Namespaces foun: Clazs Description:

Namespace: irnnt\EIMVZ v , The Win32_PhyzicalMemony class represents a physical
k * |memory device located on a computer system as available to
838 classes found. the: operating system,
Clazs: EW’in32_F‘hysica|M emory vl

Property Description:

; i 'R bl - ; 7
[List &l the properties in the class] i Fi:?l:;:al;e e The Tag property containg a sting that uniquely identifies the [1#

physical memory device represented by an instance of

Resits: |20 Propeties found. gzrtlalNumber /in32_PhysicalMemonIE xample: Physical Memory 1
| Speed | _

| Status

E— | S v

[List all the methods in the class] Method Description:

Results:

[List all the qualifiers far the class

Fesults:

Much like the other tools, if youre interested in accessing WMI information
programmatically this will be a fun one to play with. This may just be my new favorite
tool.

WMI Manipulation Methods

The time has come to progress beyond rudimentary examples and explore the various
methods used in the MOF to open the doors that extract data from the client systems.

This book will cover six methods to manipulate the WMI on a managed system for
SMS hardware inventory purposes. Some of these methods can be used in more than
one situation, but if you stop to think about it, and analyze what you are trying to do,
eventually you will decide upon the correct method—use the power of the MOF Luke.

In the next chapters I'll go into each one with a scenario and suggested use situation to
try to help you decide how to go about using the various methods.

52

START TO FINISH GUIDE TO MOF EDITING

As was mentioned earlier, this is not a complete guide on WMI or a guide to advanced
MOF scripting. It is meant to be a comprehensive guide to the SMS_def.mof file and
its use by SMS to extract data from client systems.

Two men approached a deep, and raging river. The first man begins construction of a
raft and collects dead logs, branches, and vines. After two hours of intense labor, the
raft is finally ready. With his makeshift paddle in hand and his heart intent on reaching
the opposite shore, he pushes the raft into the water.

After an hour of paddling through rough rapids, humongous boulders, and sharp
rocks, the man is almost to the riverbank. Finally he sets foot on the soft soil and
raises his arms in triumph!

The second man, having walked upstream and crossed the river using the bridge, has
been in the pub for two hours.

The moral of the story is: Somsetimes it’s easier to follow the best path rather than to just head
straight toward your goal.

This is quite often the key to successful MOF and WMI modification. First, analyze
your goal, and then determine the best method to reach that goal.

The following are the six methods we will be covering:

1. Reporting on an existing class

2. Pulling registry keys using the Registry Property Provider
3. Pulling registry keys using the Registry Instance Provider
4. Pulling data using the View Provider

5. Static hardware inventory extensions.

6. Scripted hardware inventory extensions

Each of the six methods is best suited to obtain client data in a different manner.
Although two methods 7ay be able to get the same data, it is better to use the proper
method for the job. A brick may drive a nail, but why not use a hammer?

It would be nice if every bit of data from a client could be collected, but sometimes
there is data that cannot be retrieved using the existing providers. For example,
registry trees with unpredictable key names and structures. This is also the case when
the keys have values that the registry providers simply cannot collect, such as the HAL.

53

START TO FINISH GUIDE TO MOF EDITING

In these scenarios, you must write a script that collects the data and writes it to a static
MOF (Method 6), directly into a WMI class, or into a MIF to be collected by the
hardware inventory (Chapter 10 describes this process).

This is what you've been waiting on—actually getting to the SMS_def.mof
modification process. The next six chapters will walk you through using the different
methods from start to finish...enjoy!

54

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

WMI is the Microsoft implementation of WBEM and is used to gain access to the data
stored in the Common Information Model Version 2 (CIMV2) repository on a system.

The CIMV2 repository on a system can be compared to the windows file system;
folders within folders and each containing data relevant to that folder. In other words,
namespaces within namespaces and each contain their corresponding instances.

The #pragma namespace line is used to navigate throughout the various namespaces
within the CIMV2 repository.

Data classes contain the actual WMI data that SMS queries for.

Reporting classes contain the specific data retrieved from data classes that SMS
inventories.

Key fields are used by WMI and SMS to identify individual objects within arrays. Key
fields atre set within the SMS database the first time a new class is added via hardware
inventory and cannot be easily changed thereafter.

Using tools to access WMI information you can see what data is there and check the
success or failure of your MOF modifications. These tools include:

WBEMTEST
Built-in WMI component

CIM Studio
http:/ /www.microsoft.com/downloads/details.aspx?FamilvID=6430£853-1120-48db-

8cch-f2abdc3ed314&Displavl.ang=en

Scriptomatic version 2
http:/ /www.microsoft.com/downloads/details.aspx?FamilyID=09dfc342-648b-4119-

b7eb-783b0£7d1178&Displayl ang=en

WMI Code Creator
http:/ /www.microsoft.com/downloads/details.aspx?familvid=2CC30A64-EA15-

4661-8DA4-55BBC145C30E&displaylang=en

55

START TO FINISH GUIDE TO MOF EDITING

Chapter 5:
Reporting on an Existing Class

Even when you kenor where you are going, the jorney is still oftert filled 11th surprises
~Steven R. Webber

he easiest addition to any MOF file is to find an existing WMI data class and
add a new reporting class for it to the end of the standard SMS_def.mof file.
There are HUNDREDS of classes that are not included in the standard
SMS_def.mof file to choose from.

Now don’t go thinking you should just skim through this chapter because I said it was
the easiest. Even though it’s faitly straightforward, there are still some pretty big
pitfalls you need to avoid.

Here is a useful example of using the SMS_def.mof to query an existing Win32 class.
By adding a reporting class in your MOF for our good buddy, the
Win32_PhysicalMemory class, you are able to retrieve physical memory device
information from your client systems. This information will allow you to see how
many physical RAM chips are installed on a system and in what slots.

Because Win32_PhysicalMemory is an existing Win32 class, the data class is already
defined in WMI. In order for SMS to get the data, you just need to create the
reporting class in the 70/\ CIMT"2\SMS namespace to tell hardware inventory what to
collect.

To add the Win32_PhysicalMemory reporting class to your default SMS_def.mof just
paste the following example az #he very end of your SMS_def.mof file. Take note of the
compound key created by using both the Tag and CreationClassName fields:

56

START TO FINISH GUIDE TO MOF EDITING

//
// Start of Physical Memory reporting class

//
#pragma namespace ("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE),SMS_Group_Name("Win32_PhysicalMemory"),
SMS_Class_ID("MICROSOFT|Win32_PhysicalMemory|1.0")]

class Win32_PhysicalMemory : SMS_Class_Template

{

[SMS_Report (TRUE)] string BankLabel;

[SMS_Report (TRUE), SMS_Units("Megabytes")] uint64 Capacity;
[SMS_Report (TRUE)] string Caption;

[SMS_Report (TRUE)] string DevicelLocator]];

[SMS_Report (TRUE)] uint16 FormFactor;

[SMS_Report (TRUE)] string Manufacturer;

[SMS_Report (TRUE)] uint16 MemoryType;

[SMS_Report (TRUE)] uint32 PositioninRow;

[SMS_Report (TRUE)] uint32 Speed,;

[SMS_Report (TRUE),Key] string Tag;

[SMS_Report (TRUE),Key] string CreationClassName;

2
//
// End of Physical Memory reporting class
//

It’s a good idea to always add your commented additions to the end of the standard
SMS_def.mof file so you can find them later. Even though sitting around skimming
through the SMS_def.mof looking for a particular class may make you look busy for
your boss, it’s really not the most efficient way to go.

Copy, paste, save, and you're all set with a new reporting class in your MOF. When the
SMS_def.mof is compiled this class will be added to the local WMI of your SMS
clients.

Wait a second. What exactly did that do? The example above is a prime example
of a reporting class that was not in the default SMS_def.mof file, but could add useful
information. If you look at the field names, you’ll see Capacity, Caption, Manufacturer,
Memory Type, etc. This information may prove valuable to you as an SMS
administrator.

ORay, I Rnow what a reporting class is and what it does, but how did you even
create that class? Reporting classes look very similar. They all have the same header
structure followed by a list of field names set either to “TRUE” or “FALSE”.
Therefore, if I find a class I want to use on the Microsoft website, ot in the WMI
repository itself, I can create my own class by following the same structure of an
existing class.

57

START TO FINISH GUIDE TO MOF EDITING

Structure of a Reporting Class

Below is an example of a “trimmed down” physical memory reporting class:

LINE1 //

LINE 2 // Start of Physical Memory reporting class
LINE3 //

LINE 4 #pragma namespace ("\\\\.\\root\\CIMV2\\SMS")

LINE 5
[SMS_Report(TRUE),SMS_Group_Name("Win32_PhysicalMemory"),
LINE6 SMS_Class_ID("MICROSOFT|Win32_PhysicalMemory|1.0")]
LINE 7 class Win32_PhysicalMemory : SMS_Class_Template
LINE 8 {

LINE9 [SMS_Report (TRUE)] string DevicelLocator[];

LINE 10 [SMS_Report (TRUE),Key] string Tag;

LINE11 }

Lines 1-3:

LINE1 //
LINE 2 // Start of Physical Memory reporting class
LINE3 //

Comments, comments, comments. Whenever you modify the SMS_def.mof you need
to comment the beginning and ending appropriately. Just scrolling through the MOF
you’ll notice everything pretty much looks the same. Finding this section a month
from now would be difficult without the comments telling you what you did. These
comments are for example only; usually you’ll want to add more descriptive
information. Maybe you will want to know the exact date you started this
modification, who initiated it, and who was the last person to modify it. Adjust your
commenting policy to fit whatever your personal situation is and requirements from
your employer if applicable.

Line 4:

#pragma namespace ("\\\\.\\\root\\CIMV2\\SMS")

This line declares which namespace the following data should be added to. It only
needs to be done once to change the “destination”. For example, if you change to
Channel 6 on your TV, until you change the channel, you’ll always be watching
Channel 6. Until you change the namespace, all data will continue to go into the last
namespace chosen. In most cases, if the last class in the MOF was a reporting class,

58

START TO FINISH GUIDE TO MOF EDITING

you do not need this line, as the “Channel” is already set to the proper namespace:
roo\CIMT/ " 2\SMS.

Lines 5-6:

LINE 5
[SMS_Report(TRUE),SMS_Group_Name("Win32_PhysicalMemory"),
LINE6 SMS_Class_ID("MICROSOFT|Win32_PhysicalMemory|1.0")]

The next line begins the Header section of the class declaration, enclosed in brackets [
and]. Inside the Header are typically three properties:

» The Class Level Reporting Propetty
» The SMS Group Name
» The SMS Class ID

Line 5:

[SMS_Report(TRUE),

The class level reporting property. This line determines whether the hardware
inventory will collect azy information on the class at all. If it’s TRUE, then the class
will be collected by the hardware inventory process. Ifit’s set to FALSE, then the
entire class will be excluded.

Line 5:

SMS_Group_Name("Win32_PhysicalMemory"),

This is the name of the group that will appear in the resource explorer for your
systems, and when you are looking to do queries on this class. The name of the group
can be any name you choose, but I recommend sticking close to the actual name of the
class to keep things from getting confusing. If your class name was “BoogaBooga”
and your Group Name was set as “My Company User Information”, youre asking for
trouble.

The group name is also used when SMS initially creates the table in the SQL database.
If you have a class created with an SMS_ GROUP_NAME of "Mikes Registry
Information" with 3 string fields, you'll have an SMS table created called

59

You may want to change
the Company name and
version number
(“Microsoft|” and “|1.0”)
to keep track of which
reporting classes were
default from Microsoft,
and which you added

yourself.

START TO FINISH GUIDE TO MOF EDITING

"Mikes_Registry_Inform DATA" (21 characters of your group name will be used,
including spaces converted to underscores) with 3 string fields.

It only takes one machine with one new class in its repository to add two tables, two
stored procedures, and three entries into the WMI on your SMS site server. Be wary
when you experiment!

Line 6:

SMS_Class_ID("MICROSOFT|Win32_PhysicalMemory|1.0")]

This line can be viewed as the “main” line for the entire class. The class ID is the only
property in the class that must be unique. If you created three classes with the Group
Name of “User Information” that would be acceptable (not recommended, but
acceptable). However, the Class ID for each of these classes st be unique. One class
may have a Class ID of “User Information” and one may have “User Data” and one
may have “Microsoft| User_Info|1.0”. However, the only requirement is that they be
unique.

Do I have to include the “Microsoft | " and “|1.0” around my class ID? No. This
is a misconception that hasn’t been propetly clarified. Having “Microsoft|” before a
class ID is not significant, and could be replaced with “Christmas|”, or even removed
altogether. The class ID only has to be unique.

Many administrators will use the “Microsoft|” and “|1.0” when they are creating
reporting classes for existing Win32 data classes. However, I like to change the
company name section from these items to keep track of which reporting classes were
default from Microsoft and which ones I added myself. An example of doing that
would be:

SMS_Class_ID("SMSExpert|Win32_PhysicalMemory|1.0")]

That way I know I added this reporting class. I could even update the “1.0” part to
“2.0” whenever I modified this reporting class in the future.

Line 7:

class Win32_PhysicalMemory : SMS_Class_Template

60

START TO FINISH GUIDE TO MOF EDITING

Line 7 is the beginning of the actual reporting class declaration. The name of the
reporting class zust be identical to the name of the data class that it is reporting on. If
you are creating a reporting class for an existing data class, there is no room for error.
However, if you are creating a reporting class for a data class that yox created, then you
can change the name of both the reporting class and data class to whatever you want.

If your data class is Win32_Christmas, then yourline 7 would be:

class Win32_Christmas : SMS_Class_Template

Lines 8 and 11: { and };

As silly as it sounds, these two lines are very important and can be the hardest to
troubleshoot if you miss them. Before the “innards” of a class can be defined, you

have to put a left curly brace “{*, and after you are finished you must put a right curly

brace with a semicolon*};”. These mark the beginning and end of the entire class
declaration.

Lines 9 and 10:

[SMS_Report (TRUE)] string DevicelLocator;
[SMS_Report (TRUE),Key] string Tag;

Remember from way back in Chapter 2 where I said these were field level reporting
properties? Surprise, they’re still field level reporting properties! One of these is
special though; notice that line 10 has another word in there after TRUE. This is a
“key” thing of which to take notice when you’re defining a reporting class.

Before I continue, I need to quickly explain what these lines do.

Line 9:

[SMS_Report (TRUE)] string DevicelLocator;

This is the field level reporting property line for the WMI field called Devicel.ocator
within the Win32_PhysicalMemory class. This line tells the SMS Inventory Agent to
pay attention to this field and record its information in the SMS database. If this was
set to FALSE I'm betting you can tell me what happens, since I've pretty much beaten
this dead horse enough already!

61

START TO FINISH GUIDE TO MOF EDITING

Line 10:

[SMS_Report (TRUE),Key] string Tag;

A line such as line 10 is typically, but not always, found only once in a reporting class.
Not only does it state that this field should be reported, but it also states that the field is
a key freld. 'This key field is important when creating reporting classes for data classes
with multiple instances.

If a data class has multiple fields with the key qualifier, then all those key fields taken
together form what is called a compound key. The Win32_PhysicalMemory class is a
prime example of a compound key in action. Take another look at the
Win32_PhysicalMemory reporting class and see if you can identify the compound key:

//
// Start of Physical Memory reporting class

//
#pragma namespace ("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE),SMS_Group_Name("Win32_PhysicalMemory"),
SMS_Class_ID("MICROSOFT|Win32_PhysicalMemory|1.0")]

class Win32_PhysicalMemory : SMS_Class_Template

{

[SMS_Report (TRUE)] string BankLabel;

[SMS_Report (TRUE), SMS_Units("Megabytes")] uint64 Capacity;
[SMS_Report (TRUE)] string Caption;

[SMS_Report (TRUE)] string DeviceLocator[];

[SMS_Report (TRUE)] uint16 FormFactor;

[SMS_Report (TRUE)] string Manufacturer;

[SMS_Report (TRUE)] uint16 MemoryType;

[SMS_Report (TRUE)] uint32 PositioninRow;

[SMS_Report (TRUE)] uint32 Speed;

[SMS_Report (TRUE),Key] string Tag;

[SMS_Report (TRUE),Key] string CreationClassName;

b
//
// End of Physical Memory reporting class
//

Now you see it, right? Both the Tag and CreationClassName fields have “Key” in
their description. These two fields form the compound key for the
Win32_PhysicalMemory Class.

If you are attempting to inventory the above mentioned Win32_PhysicalMemory class
to see how many memory chips your system contains, and create the MOF

62

START TO FINISH GUIDE TO MOF EDITING

modifications using only one key tag, you will never get proper information in your
data table for the class.

Hey! I just looked up the Win32_PhysicalMemory Class from that link you gave
me and there are a lot more data fields than the ones you showed in your example.
What gives?

Would I ask you a rhetorical question? OK, OK I'll get serious now. Just because
there are many possible fields for each class doesn’t mean that you have to list them all
in your SMS_def.mof. You only need to ensure you have all the key fields and the
fields that you find useful to your purposes.

Well, since you look bored sitting there listening to me talk about the
Win32_PhysicalMemory Class—and the guy in the back is actually snoring—Ilet’s go
through the process of reporting on an existing class together.

Someone pick a WMI Class for us to report on ... you sir, with the red shirt on, you
had your hand up first. What’s that? Win32_StartupCommand? All right, that’s a
good one because that isn’t in the default SMS_def.mof.

First, let’s see what the selling points of this class are, and if we are sure we want to add
it to our SMS_def.mof. First step, open up WBEMTEST and see what’s in there.

Figure 5.1
Object editor, for Win32_StartupCommand
Qualifiers Clase
dynamic CIM_BOOLEAM TRUE A
Locale CIM_SINT32 1033 [0=409) Save Object
provider CIM_STRIMG Clbdiafin32 &
T FIM CTEIMG [AEAPCENA FERET 1M
¢ s Show MOF
AddQualifier | EditQualifier | Delete Qualifier | Superclass
Froperties ™ Hide System Properties [Local Only B
Caption CIM_STRIMG <nlly ~
Command CIM_STRING <nully
Description CIM_STRIMG <nlly m
Laocation CIM_STRIMG <l p
Name CMSTRING <rull> Refiesh Dbjsct
SettinglD CIM_STRIMG <l 3
Hlmmr rkd CTODIKIC Aealln
< > Update type
Add Property Edit Property Dielete Property £ Create anly
" Updat I
Methods PREIEEY
{* Either
{* Compatible
" Safe
< 3 " Force
AddMethod | EditMethod | Delste Method |

Hmm that looks interesting! Viewing instances for this class shows a whole bunch of
gobbly-goop that looks like program names and executable paths. Now I'm curious

63

START TO FINISH GUIDE TO MOF EDITING

enough to visit the MSDN website to see the particulars of this class. So let’s go see
what’s at:

http://msdn.microsoft.com/library/default.asp?utl=/library/en-

us/wmisdk/wmi/win32 startupcommand.asp

Just in case you’re not near a computer right now, here’s what the site has to say about
it:

The Win32_StartupCommand WMI class represents a command that runs automatically
when a user logs onto the computer system.

The following syntax is simplified from MOF code and includes all inherited properties.

class Win32_StartupCommand : CIM_Setting
{

string Caption;
string Command,
string Description;
string Location;
string Name;
string SettingID;
string User;

string UserSID[];
5

So this class is where we look for commands that run automatically when a user logs
onto a system. Maybe this would be a good place to look for adware or spyware.
Even if you wouldn’t want this in your MOV, the practicality of it isn’t important right
now; what is important is that we illustrate this method.

Look at that part in bold. Looks pretty familiar, doesn’t it? You’ve almost got a MOF
modification for this class already. Another thing about that part in bold is that it looks
like there’s a new field in there that wasn’t in our WBEMTEST display, the ‘string
UserSID[];” part. Don’t ask me about that. I just follow what is posted on MSDN’s site,
and it hasn’t failed me yet.

The UserSID field is used to match up an SID to a user for whom startup commands
run. This is how you determine who the user is for whom the program is set to start.

How’d I figure that out so quickly? Maybe you didn’t check out the UserSID field on
the class from the MSDN website, so no extra credit for you! This is a perfect example
of why I cannot stress enough the importance of checking that site for any class you
want to add. Had we gone straight from WBEMTEST’s displayed information we
wouldn’t have had that field in the MOF and we wouldn’t know what was going on
with some bizarre side effect caused by trying to match up a startup command with a
deleted usert.

64

START TO FINISH GUIDE TO MOF EDITING

Maybe you also noticed the [] symbol following the UserSID field. The [] symbol
means the data from that field is stored as an array. Multiple users = an array of SIDS.

Counting the UserSID field, there are eight reporting fields we can use for the
Win32_StartupCommand Class. So, in this case, we won’t be picky about the fields we
want, and we’ll just use them all.

The first step would be to copy an existing reporting class and paste it into a new text
document. Then modify that reporting class to contain data for this new class going
off the MSDN website and what we learned about it with WBEMTEST.

Copying an existing reporting class helps to maintain the format and syntax without
having to memorize everything.

Any reporting class will do for the most part, just pick one at random and play the
‘which words don’t belong” game.

The end result after copying and modifying one of the existing reporting class
structures to accommodate the Win32_StartupCommand Class is shown below: (the
parts I've changed to oblige the Win32_StartupCommand Class are in bold red):

//

// Start of Startup Command reporting class

//
#pragma namespace ("\\\\-\\\root\\CIMV2\\SMS")

[SMS_Report(TRUE),SMS_Group_Name("Win32_StartupCommand"),
SMS_Class_ID("MICROSOFT|Win32_StartupCommand|1.0")]

class Win32_StartupCommand : SMS_Class_Template

{

[SMS_Report (TRUE)] string Caption;

[SMS_Report (TRUE),Key] string Command,;

[SMS_Report (TRUE)] string Description;

[SMS_Report (TRUE),Key] string Location;

[SMS_Report (TRUE),Key] string Name;

[SMS_Report (TRUE)] string SettingID;

[SMS_Report (TRUE),Key] string User;

[SMS_Report (TRUE)] string UserSID[];

//
// End of StartupCommand reporting class

//

65

START TO FINISH GUIDE TO MOF EDITING

Whoa! Look at all those key fields! This is another example of a compound key for a
WMI Class. Lucky us! We wouldn’t have known this without dutifully checking the
MSDN site for this class’s properties.

Another bad thing could have happened. We could have decided we didn’t want to use
some of these fields and, unknown to us, they turned out to be key fields. Have I
made the point enough for you to use that MSDN site?

When viewing the class information on the web, it may note at the bottom of the page
that there are prerequisite MOF files that must be compiled on the clients to obtain the
information successfully. With WMI 1.5, this should not be necessary for most
classes, but it is still a potential issue.

What other data types other than string can you use?
There are quite a few different values that can be used in the MOF:

» Uint8, Uint16, Uint32, Uint64 = 8, 16, 32 and 64 bit Unsigned Integers
String = String of Characters

Boolean = True or False, Yes or No, 1 or 0

Sint8, Sint16, Sint32, Sint64 = 8, 16, 32, and 64 bit Signed Integers
Real8, Real16, Real32, Real64 = 8, 16, 32, and 64 bit Real Numbers

YV V. V V V

DateTime = Date and Time value

Why do I sometimes see an additional line in the Header with “SMS_rxpl.dll’?
You're referring to the line: ResID(600),ResDLL("SMS_RXPL.dI"). This line exists
in the reporting classes that already are included in the SMS_def.mof file.

The purpose of the line is to identify this class to the hardware inventory based upon
its ResID in SMS_rxpl.dll. This enables the fields from that reporting class to be
labeled appropriately, with spaces.

For example, if you create a reporting class without this line, all of the fields for that
class will be labeled with their field name; VideoAdapterConfiguration will be labeled
“VideoAdapterConfiguration”. However, if you identify this reporting class with its
appropriate ResID in the SMS_RXPL.dI, VideoAdapterConfiguration will be labeled
as “Video Adapter Configuration”. A very minor difference, but sometimes it is the
little things that make it easier to read!

66

START TO FINISH GUIDE TO MOF EDITING

SMS_rxpl.dll can be explored using Microsoft Visual Studio to identify the other
ResIDs.

As you can see, it’s very easy to take an existing data class and create your own
reporting class. Just change a few items in a reporting class, cut and paste a few lines,
and in minutes, you’ll have this data reporting to SMS!. Don’t ever tell anyone it’s that
easy or we can all say good-bye to our future raises!

Either that or just convince them that you found the data using one of the harder
methods we’ll talk about next! That didn’t scare you, did it?

67

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

Reporting on existing data class is the easiest MOF modification method. This
method simply involves creating a new reporting class to tell SMS to report it dutring
hardware inventory.

Because reporting classes are very similar to each other, the easiest way to create a
custom reporting class is to copy and paste an existing reporting class and
modify it to fit your specific needs.

Use comments to mark the beginning and end of any new custom MOF
modification. This allows you to see what you have added and why.

Changing namespaces only needs to be done when you switch from a data class to a
reporting class. As long as the last namespace change was

#pragma namespace ("' | | .| \root| | CIMV2\| | SMS") you can add as many
new reporting classes as you choose without changing the namespace again. If
you need to add an additional data class after previous reporting classes, be sure to
change the namespace back to CIMV2 by using the #pragma namespace
("\\\\\\rooA\CIM172") command.

Class level reporting properties determine whether hardware inventory will collect
information for the class.

SMS Group Names are the names for classes as they appear in Resource explorer for
client systems, as well as the table names for the class in the SQL database.

Class ID's must be unique for cach class created. You may want to change the
company name and version number of class ID's (“Microsoft|” and “| 1.0”) to keep
track of which reporting classes were default from Microsoft, and which you added
yourself.

Reporting class names must be identical to their corresponding data classes.

Compound keys are created by identifying two or more field level properties as Key
fields.

68

START TO FINISH GUIDE TO MOF EDITING

There are quite a few different data type values that can be used in the MOF*:

Uint8, Uint16, Uint32, Uint64 = 8, 16, 32 and 64 bit Unsigned Integers
String = String of Characters

Boolean = True or False, Yes or No, 1 ot 0

Sint8, Sint16, Sint32, Sint64 = 8, 16, 32, and 64 bit Signed Integers
Real8, Real16, Real32, Real64 = 8, 16, 32, and 64 bit Real Numbers
DateTime = Date and Time value

YVVVVYY

The SMS_rxpl.dll file can be explored using Microsoft Visual Studio to identify the
other ResIDs. These ResIDs are used by SMS to enable spaces in data classes.

69

START TO FINISH GUIDE TO MOF EDITING

Chapter 6: Registry Property Provider

You cannot put the sasmze shoe on every foot.
-Publiius Syrs (¢ 42 BC)

finding two that inventory similar registry information but look entirely

different? It could be because one works and one doesn't, however it's

much more likely that they are using two different providers to get to the
same information.

H ave you ever found yourself perusing MOF examples on the web and

The Registry Property Provider (RPP) and the Registry Instance Provider (RIP) are
commonly confused. While they both can be used to pull 7z0s7 single registry keys, they
each have their own unique purpose and capabilities.

This chapter is about the Registry Property Provider (RPP). I've decided to make the
different registry providers completely separate chapters just to help make a distinction
between the two, and to help you better understand them

In a short summary, the Registry Property Provider excels at grabbing a variety of keys
from a variety of &nown locations and adding them all to one reporting class if
necessary. The Registry Instance Provider excels at grabbing a variety of wnknown keys
trom a single location.

Take a moment and repeat that last line a couple of times to yourself just to let it sink
in ... trust me, it will help.

When to Use the Registry Property

Provider

The beauty of the Registry Property Provider is that it looks through djfferent registry
locations, for specific keys, and returns all that data into ore common data class.

70

START TO FINISH GUIDE TO MOF EDITING

Here’s an easy example: Let’s suppose you want to use the RPP to find the time zone
names for each of your SMS clients. You know exactly where this information is in
the registry, and you know the exact name of the key this information resides in. In
case you forgot that you knew that, here is a picture to help refresh your memory:

Yes, the Time Zone information is already in the standard SMS 2003 SP1 SMS_def.mof.
I’'m just using this as an example for the RPP here. Bear with me.

Figure 6.1

¢ Registry Editor

File Edit ‘Wiew Favorites Help

3200 Terminal Server A Mame Type Diata o
{2 TimeZoneInformation #¥]5tandardBias REG_DWORD Dx00000000 (1)
3 Update £ Standardiame Jel=elliers Eastern Standard Time
1+ UshFlags M| (8 ck andavdSkark D= RTMADY A0 AR A= 00O 00 AP A0 0 A0 OF
< > < >

My Computer\HEKEY _LOCAL_MACHIMEVSYSTEMCurrentControlSet! Control TimeZoneInformation

Because you know the exact location in the registry, and the exact key name where the
data resides, this makes a perfect scenario for using the Registry Property Provider.

For SMS 2003, we don’t have to define the Registry Property Provider itself because it
is already defined at the top of the standard SMS_def.mof. For SMS 2.0 you’ll need to
copy and paste the below into your SMS_def.mof to register the provider before using

it:

/I Registry property provider
instance of __ Win32Provider as $PropProv
{
Name ="RegPropProv";
ClsID ="{72967901-68EC-11d0-B729-00AA0062CBB7}";
ImpersonationLevel = 1;
PerUserlnitialization = "False";

Y
instance of __ PropertyProviderRegistration
{

Provider = $PropProv;

SupportsPut = True;
SupportsGet = True;

};

For those wondering what is actually done in those 15 lines, here you go:

71

Be careful of the effects
of word wrap in these
examples, sometimes
there just isn’t room
between the margins to
display it all out right—
that registry key should
extend all the way to the

end here.

START TO FINISH GUIDE TO MOF EDITING

The namespace is changed to 7o\ CIM172. An instance of __Win32Provider is
declared with an ID of $PropProv, a Name of “RegPropProv”, and using the class ID
for the Property Provider. Then, the provider is actually registered by creating an
instance of the __PropertyProviderRegistration class, using the ID of the provider in
the instance above it, $PropProv, and with the properties of Put and Get set to TRUE,
meaning that data can be added or extracted from the class using this provider.

Wow, that was a mouthful huh? Let’s move on.
bl

Using the RPP you would define the TimeZonelnfo data class and declare an instance
of the data class to store the time zone information. Let’s take a look at all three steps
in more detail.

Before we can get to the “good stuff” we need to make sure we’re in the correct
namespace for a data class which would entail the below first line of the MOF edit:

#pragma namespace("\\\\-\\\root\\CIMV2")

Now, the “good stuff”. We need to define the TimeZonelnfo data class. To do so we
use the below lines:

[DYNPROPS]
class TimeZonelnfo

[key] string KeyName;
string Name;

|

Notice the [DYNPROPS] line? That tells MOFCOMP that we’re about to go after
some dynamic data maintained by a provider. It’s patient, it will wait for us to name the
provider in the next few lines. The next lines define the name of the class, the property
names and data types for each.

[DYNPROPS]

instance of TimeZonelnfo
{

KeyName = "TimeZonelnfo";
[PropertyContext("locallHKEY_LOCAL_MACHINE\\SYSTEM\\CurrentCont
rolSet\\Control\\TimeZonelnformation|StandardName"),
Dynamic,Provider("RegPropProv")] Name;

5

72

START TO FINISH GUIDE TO MOF EDITING

There’s the [DYNPROPS] line again, denoting the dynamic data we’re about to
define—the instance of the TimeZonelnfo class. The KeyName is just some static
information that serves as a Key field for the class. Naming this KeyName is a
personal choice; you could name it “MyFlipFlop” and it would serve the same
purpose. Just remember if you call it MyFlipFlop here you have to make sure it is
defined as MyFlipFlop in the class definition above as well.

Next come the PropertyContext line(s). This is the line that puts the registry in
Registry Property Provider. Just define the registry branch you want to query with a |
symbol in front of the particular key you're after. Directly after the registry key
information you’ll notice a line like: Dynamic,Provider("RegPropProv")] [name];. This
tells MOFCOMP that this is a dynamic registry location and the way to get to it is to
use the RPP or RegPropProv as the SMS_def.mof calls it. Right after the provider
information you give the registry data stored in that location a name that you want to
see in your resource explorer.

Here I'm only touching on one particular key. You could continue on with as many
keys as you wanted anywhere in the registry as long as you define the correct path and
key name. Just add new PropertyContext lines completed as above with paths for each
registry key you want to peer into, and define a name to make this key your own. Just
remember that when you do this, all of this data will appear in the TimeZonelnfo class
in Resource Explorer.

On to the reporting class ...

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE),SMS_Group_Name("TimeZonelnfo"),SMS_Class_ID("MI
CROSOFT|TimeZonelnfo|1.0")]
class TimeZonelnfo : SMS_Class_Template

{
[SMS_Report(TRUE),key] string KeyName;
[SMS_Report(TRUE)] string Name;

2

I’'m sure this looks familiar to you at this point. It’s the reporting class for our
TimeZonelnfo data class. Switch to the ro/\ CIM1/72\SMS namespace to declare the
reporting class, name your resource explorer group name after the class name—exactly,
and then define the reporting properties for the fields you’ve already defined, a.k.a..the
names you’ve given the data from the PropertyContext lines.

Remember, this new TimeZonelnfo data class is not present by default in the WMI
repositories of your clients. For SMS 2.0 just update the SMS_def.mof on the site
server and the clients will get the new information. For SMS 2003 clients, you’ll have

73

START TO FINISH GUIDE TO MOF EDITING

to compile this new MOF addition on each of them locally to get the class into WMI
before hardware inventory will report the time zone information to SMS.

Add in the comment lines so that everyone who looks at your SMS_def.mof file when
you’re finished—including yourself a month from now—suwill understand your

fascination with discovering the names of the time zone your systems are using. Your
MOF edit will look something like this:

//

//Start of Time Zone Information

//
#pragma namespace("\\\\.\\root\\CIMV2")

[DYNPROPS]
class TimeZonelnfo

[key] string KeyName;
string Name;

5

[DYNPROPS]

instance of TimeZonelnfo
{

KeyName = "TimeZonelnfo";
[PropertyContext("locallHKEY_LOCAL_MACHINE\\SYSTEM\\CurrentCont
rolSet\\Control\\TimeZonelnformation|StandardName"),
Dynamic,Provider("RegPropProv")] Name;

5

#pragma namespace("\\\\.\\\root\\CIMV2\\SMS")
[SMS_Report(TRUE),SMS_Group_Name("TimeZonelnfo"),SMS_Class_ID("MI
CROSOFT|TimeZonelnfo|1.0")]
class TimeZoneinfo : SMS_Class_Template
{

[SMS_Report(TRUE),key] string KeyName;

[SMS_Report(TRUE)] string Name;
2
//
//End of Time Zone Information

//

Using this MOF edit your resulting SMS console will display some nifty time zone
information for your systems similar to Figure 6.2:

Figure 6.2

Fil

=l B3

'Hi Resource Explorer

= Action Wiew Help

- BESRB| 2

&

«

""" System = | | keyMame | Mame |

sil® System Enclosure B Tivezonelnfo Eastern Standard Time
i TimeZoneInfo

ias LISE Controller -
- =
| >|

START TO FINISH GUIDE TO MOF EDITING

Notice in Figure 6.2 how the names you’ve chosen appear in resource explorer. The
KeyName field appears right beside our lonely PropertyContext line we called Name.

I’ve only queried one registry key here for simplicity sake, but the real beauty of the
RPP is that it is capable of getting multiple instances of data from the same explicitly
defined registry branch locations to drag into a single data class for reporting.

All right, I can understand if that didn’t make too much sense. How about a more
complicated example?

There is an excellent example of the RPP in action within the default SMS 2003
SMS_def.mof. This Microsoft supplied example comes in the form of SMS Client
State. This class collects the SMS client component name, pending time, pending
version, state, and version as instances of SMS Client State. Instead of creating a new
class for every separate component, all the data pertaining to the SMS Client State can
be found in a single location in the database.

This is an extremely long MOF edit so I'll only show you a glimpse of it. All you really
need to know is that a data class is declared—SMS Client State—and each of the
components are declared as instances of SMS Client State. They have put the
reporting class first, and then declared the many instances of the class below in this
example.

Remember, the order in which the reporting class and data class are created is not
important. 1 recommend always declaring the data class, instances of the data class,
and then reporting class for simplicity sake. In reality though, MOFCOMP doesn’t
care in what order these classes are created, and hardware inventory only cares that the
class exists when it is asked to query a reporting class to see the instances of the data
that is stored there.

Because this is such a long MOF edit I've taken out all but the first two instances of
SMS Client State, but you should be able to pick out the pattern in the excerpt below
and recognize the syntax for the RPP by now.

#pragma namespace ("\\\\.\\\root\\CIMV2\\SMS")

// Declare the SMS delta/reporting class for standard client components
[SMS_Report (FALSE),
SMS_Group_Name ("SMS Client State"),

75

START TO FINISH GUIDE TO MOF EDITING

SMS_Class_ID ("MICROSOFT|SMS_CLIENT_STATE|1.0")]

class Win32Reg_SMSClientState : SMS_Class_Template
{
[SMS_Report(TRUE),key]
string Component;
[SMS_Report(TRUE)]
string State;
[SMS_Report(TRUE)]
string Version;
[SMS_Report(TRUE)]
string PendingVersion;
[SMS_Report(TRUE)]
string PendingTime;
2

#pragma namespace ("\\\\.\\root\\CIMV2")
// Declare the class for client component registry properties

[DYNPROPS]
class Win32Reg_SMSClientState

[key]
string Component ="";

string State;

string Version;

string PendingVersion;
string PendingTime;

5

// Declare the instances, one for each client component

[DYNPROPS]
instance of Win32Reg_SMSClientState
{

Component="SMS Client Base Components";

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\

SMS\\Client\\Client Components\\SMS Client Base

Components\\Installation Properties|SMS Client Installation State"),
Dynamic, Provider("RegPropProv")]

State;
[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\SMS Client Base
Components\\Installation Properties|installed Version"),

Dynamic, Provider("RegPropProv")]

Version;

76

START TO FINISH GUIDE TO MOF EDITING

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\SMS Client Base
Components\\Installation Properties|Pending Operation Version"),
Dynamic, Provider("RegPropProv")]
PendingVersion;

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\SMS Client Base
Components\\Installation Properties|Pending Operation Time"),
Dynamic, Provider("RegPropProv")]
PendingTime;

5

[DYNPROPS]
instance of Win32Reg_SMSClientState
{

Component="Available Programs Manager Win32";

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\Available Programs Manager
Win32\\Installation Properties|SMS Client Installation State"),
Dynamic, Provider("RegPropProv")]
State;

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\Available Programs Manager
Win32\\Installation Properties|installed Version"),
Dynamic, Provider("RegPropProv")]
Version;

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\Available Programs Manager
Win32\\Installation Properties|Pending Operation Version"),
Dynamic, Provider("RegPropProv")]
PendingVersion;

[PropertyContext("locallHKEY_LOCAL_MACHINE\\Software\\Microsoft\\
SMS\\Client\\Client Components\\Available Programs Manager
Win32\\Installation Properties|Pending Operation Time"),
Dynamic, Provider("RegPropProv")]
PendingTime;

5

77

START TO FINISH GUIDE TO MOF EDITING

Viewed from resource explorer, the complete data class (with all the instances) looks
like Figure Figure 6.3:

Figure 6.3

“hi Resource Explorer

Bl Processor I} gAva\Iahle Programs Manager Win32 Installed 2.00.1493.3010
= 5051 Contraller B, srcusars Iwentory Saent Imstalled 2.001453.3010
g Services ‘@gLicense Metering
g .@.NT Event To SHMP Tiap Tianslator

g Sound Devices Q. Remate Control Installed 2.00.1433.3010
B System B, SMS Client Base Components Installed 2,00 14333010
8 System Enclosure B, S oftware Distribution Irstalled 2.00.1493.3010
g Travel Mode gSoftware Inventory Agent Inztalled 2.00.1433.3010
{8 Video Corfiguration 3, indows Management 1085.0005 Installed 1085.0005

g Wideo Contraller gSMS 1.x Client Migration [if required) n'a néa n'a

(8 indows Installer-based = @1 <115 2 () Clont Upgrade (TRUE i Disabled] nta na nta

= wrketation Statue | @1 cy15 5.0 pre P2 Ciert Upaiads (TRUE & Disatled) n/a wa nta

See how each instance is listed under the main SMS Client State class? The same data
class reporting fields are utilized for each instance of the class.

78

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

The Registry Property Provider (RPP) excels at grabbing a variety of keys from a
variety of known locations and adding them all to one reporting class.

The RPP is already registered in the default SMS_def.mof for SMS 2003. For
SMS 2.0 sites you need to add in the registration information yourself before using it.

The RPP’s PropertyContext line identifies the exact registry key to search in by using
the | symbol at the end of the registry path:

[PropertyContext("local | HKEY_LOCAL_MACHINE\\Software\ \Microsoft\\SM
S\\Client\\Client Components\ \ Available Programs Manager Win32\ \Installation

Properties | Pending Operation Version")

When adding new data classes with the RPP you need to compile the MOF
modification on Advanced Clients to get the new data class information into their
WMI repositories.

The order in which the reporting class and data class are created is not
important. I recommend always declaring the data class, instances of the data class,
and then reporting class for simplicity sake.

79

START TO FINISH GUIDE TO MOF EDITING

Chapter 7

The Registry Instance Provider

Lsfe is likee playing a viokin solo in public and learving the nstrument as one goes along,
~Sarnmel Butler

the keys it is pulling like the RPP does. It simply needs to know the format of

the key structure. As long as you point it in the general direction, this provider

will query everything under the main registry key you send it to looking for
subkey names that you’ve specified as inventory properties.

T he Registry Instance Provider (RIP) doesn't need to know the exact names of

When to Use the Registry Instance
Provider

The best use for the RIP is for inventorying various subkeys under one main registry
key that all have similar data values that you want to inventory without creating more
than one reporting class.

Think of the RIP as a nosy neighbor peeking through windows. If you tell it to look in
a kitchen window and report back on all the knives it can see, it will. The RPP, in
comparison, would only tell you about knives from a specific drawer.

What if you wanted to see all the installed add-ons to Internet Explorer on your
systems to check for spyware or adware? You would have to use the RIP to recourse
through the Internet Explorer\ Extensions Keys to find that information. You know that
the main area in the registry you’re going to look in is:
HKILM\SOFTW.ARE\Microsofi\Internet Explorer\ Extensions, and you know that each of
the subkeys under there is going to contain some of the same values. So, if you want
those lower-level values you’re going to have to use the Registry Instance Provider.

Check out the example below and tell me if you would want to use the Registry
Property Provider to query for each of those “{FBSF1910-F110-11d2-BBIE...}”
subkeys under Extensions. Oh, and good luck guessing what those crazy keys even
are, not to mention not making a typo for any of them.

80

START TO FINISH GUIDE TO MOF EDITING

Figure 7.1
¢ Registry Editor '._||'E|rz|
File Edit Wiew Favorites Help
D {Bb2do9af-b7dl -4961-a929- 4‘_\ MName Type Daka -l:
([{92780B25-18CC-41C8-BIBE - MenuText REG_5Z Windows Messenger
== {FBSFI?ID'FI 10-11dz-BB9E Tu:u:uITip REG_SZ ‘Windows Messenger -
[C3 Image Caching 3 3
T— . e 1 S S
< | 3 || | >

My ComputeriHEEY _LOCAL_MACHINE\SOFTWARE \MicrosofthInternet Explarer\Extensions | {FESF191(

Wouldn’t it be easier to just say, “Hey Registry Instance Provider guy, go check out all
the subkeys under HKI M\SOFTW.ARE\Microsoff\Internet Excplorer\ Exctensions, and
look for any subkeys containing a MenuText value under there. Thanks, I'm going to
go get a cup of coffee and brag to my security people now.”

As another example, suppose you as the SMS administrator, decided to add a handy
registry entry to help you keep track of software that you have installed on systems.
You have created your own HKINM\SOFTW.ARE\SMS_Installs registry key and for
each application installation you have added values for storing data on the Description,
InstalledDate, and Version.

All you have to do is identify the main or parent registry key all the goodies are in to
the RIP, and like a nosy neighbor, it will report back every detail about your kitchen, or
every SMS installed application it can find there.

Sure sounds easy you say ... must be complicated to do. Nope. Sticking with the
above example about SMS installed applications, if you had installed four applications
in which you had added the applicable registry keys for each installation, your custom
registry additions would appear like Figure 7.2 in the client registry:

Figure 7.2

£ Registry Editor |Z||E|r5__(|
File Edit View Fawvorites Help

=27 SM5_Installs - Twpe Data o
{3 Applicationt REG 52 (walue not set)
@ Application2 an REG_SZ TestData 1.0
% iEE::E:EE:i || [aB]installedoate REG_SZ 09/07/2005 8:47:08 AM
o ARRIRSREIE | [ab)yersion REG_SZ 1.0 4
< |5 || ' ~

My Computer\HKEY _LOCAL_MACHINE,\SOFTWARE'SMS_Installs\Application1

81

START TO FINISH GUIDE TO MOF EDITING

The main confusion some have about the RIP is how it knows whete to look under
the main key for the properties you’re after. By qualifying as Key the sub key containing
the values we’re after, the RIP knows to look.

So all we have to do is instruct the RIP to go find the parent key that all the SMS
installed application information has been stored in, or:

HKIM\SOFTWARE\SMS_Installs.

By looking at the registry screenshot above, we know that the application name will be
our key field since it’s the core key for each installed application. The RIP will look
under the HKIM\SOFTW.ARE\SMS_Installs registry key. If it finds any of the values
you've specified as reporting fields (in the right pane of regedit) it will decide that the
parent key (in the left pane of regedit) to the field value keys must fall under the
category of ApplicationName.

How does the RIP Know to look for a key named ApplicationName?

The RIP doesn’t actually look for a specific key name, it just looks for the key under
the parent key you’ve specified and trusts that you know what you’re doing when you
identify that key as ApplicationName.

The MOF edit itself if fairly straight forward as well. Just identify the registry provider
you’re going to use, the RIP, and the parent key you’re after:

#pragma namespace("\\\\.\\root\\CIMV2")

[dynamic, provider("RegProv"),
ClassContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\SMS._Installs")]

Just to reinforce how the RPP and RIP are distinct, observe how the ClassContext line
shows the single, parent key from which the RIP will pull information. Yet it will
recurse through the entire SMS_Installs registry key looking for those named values.

Next, declare the data class and the values you want as PropertyContext lines.

class SMS_Installs

{
[Key] string ApplicationName;
[PropertyContext("Description")] string Description;
[PropertyContext("InstalledDate")] string InstalledDate;
[PropertyContext("Version")] string Version;

|

Finally, add in the reporting class.

82

START TO FINISH GUIDE TO MOF EDITING

#pragma namespace("\\\\.\\\root\\CIMV2\\SMS")

[SMS_Report(TRUE), SMS_Group_Name("SMS_Installs"),

SMS_Class_ID("SMSExpert|SMS_Installs|1.0")]

class SMS_Installs : SMS_Class_Template

{
[SMS_Report(TRUE),Key] string ApplicationName;
[SMS_Report(TRUE)] string Description;
[SMS_Report(TRUE)] string InstalledDate;
[SMS_Report(TRUE)] string Version;

2

After throwing in some comments and putting it all together, your RIP MOF edit
should look something like this:

//
// Start of SMS_Installs

//
#pragma namespace("\\\\.\\root\\CIMV2")

[dynamic, provider("RegProv"),
ClassContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\SMS _Installs"
)

]

class SMS_Installs

{
[Key] string ApplicationName;
[PropertyContext("Description")] string Description;
[PropertyContext("InstalledDate")] string InstalledDate;
[PropertyContext("Version")] string Version;

5

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")
[SMS_Report(TRUE), SMS_Group_Name("SMS_Installs"),
SMS_Class_ID("SMSExpert|SMS_Installs|1.0")]
class SMS_Installs : SMS_Class_Template
{
[SMS_Report(TRUE),Key] string ApplicationName;
[SMS_Report(TRUE)] string Description;
[SMS_Report(TRUE)] string InstalledDate;
[SMS_Report(TRUE)] string Version;
2
//
// End of SMS_Installs
//

83

START TO FINISH GUIDE TO MOF EDITING

Once you have compiled the MOF edit locally on a test system and received the new
inventory policy from the MP (or the new SMS_def.mof from the CAP if you're using
SMS 2.0) and run a hardware inventory, you should see something similar to Figure 7.3
in resource explorer for the system after a few minutes:

Figure 7.3

':m Resource Explorer !IEI E
File Action YWiew Help

@#Ihl_léll@

- 53 Advanced Client State _I F'.pplicatinn... ¢ | Description | trstalledate | wersion
3 olS Installs B spplicationt Test Data 1.0 09/07/2005 &i4... 1.0
Software Updates B poplicationz Test Data 2.0 09/10/2005 10:... 2.0
-4l Sound Devices | = arplications Test Data 3.0 09)012/20051... 3.0
S?fEET N « | |® applications Test Data 4.0 09/12/2005 12:... 4.0
| _|_I «| | i

Another good example of the RIP in action can be found in the default SMS 2003
SMS_def.mof in the form of the Add/Remove programs section:

#pragma namespace ("\\\\.\\root\\CIMV2")

[dynamic,
provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Win
dows\\CurrentVersion\\Uninstall")
1

class Win32Reg_AddRemovePrograms

[key]
string ProdiD;
[PropertyContext("DisplayName")]
string DisplayName;
[PropertyContext("InstallDate")]
string InstallDate;
[PropertyContext("Publisher")]
string Publisher;
[PropertyContext("DisplayVersion")]
string Version;
2

#pragma namespace ("\\\\-\\\root\\CIMV2\\SMS")

84

START TO FINISH GUIDE TO MOF EDITING

[SMS_Report (TRUE),
SMS_Group_Name ("Add Remove Programs"),
SMS_Class_ID ("MICROSOFT|ADD_REMOVE_PROGRAMSI|1.0")]

class Win32Reg_AddRemovePrograms : SMS_Class_Template
{
[SMS_Report (TRUE), key]
string ProdID;
[SMS_Report (TRUE) 1
string DisplayName;
[SMS_Report (TRUE) 1
string InstallDate;
[SMS_Report (TRUE)]
string Publisher;
[SMS_Report (TRUE)]
string Version;

5

Again, the Registry Property Provider excels at grabbing a variety of keys from a
variety of known locations. The Registry Instance Provider excels at grabbing a
variety of unknown keys from a single location.

These examples assume that the Registry Instance Provider has been registered
elsewhere in your SMS_def.mof. If you are running SMS 2003 this is done for you by
default. For SMS 2.0 you need to ensure that the RIP is registered either above this
MOF edit or as part of it.

Remember, these providers only need to be registered in your SMS_def.mof once!
To register the Registry Instance Provider for SMS 2.0 cut and paste the below lines
into your SMS_def.mof :

#pragma namespace("\\.\\root\CIMV2")
instance of __ Win32Provider as $Instprov

{
Name ="RegProv";
ClsID ="{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;
Y
instance of __InstanceProviderRegistration
{

Provider =$InstProv;
SupportsPut =TRUE;
SupportsGet =TRUE;
SupportsDelete =FALSE;
SupportsEnumeration =TRUE;

85

START TO FINISH GUIDE TO MOF EDITING

Notice that the provider is registered in the 70/\ CIM1/2 namespace and that the name
of the provider is RegProv. This is how any class that uses the provider will refer to it.
It is best not to change this name, as many examples you will find on the Internet and

in SMS communities will be using the same name for the providers.

If your name is Ed and someone yells “Chris” in a crowd, you’re not going to turn
your head. Neither will the Registry Instance Provider. If you name your provider Ed
and copy someone else’s class into your MOF that calls that same provider, Chris, the
Class will not function correctly.

86

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

The Registry Instance Provider (RIP) doesn't need to know the exact names of
the keys it is querying. Just give it a "main key" to search under and it will find any
subkey containing the values you named as reporting fields. The parent key of the
values found will be assumed to be your key field, and the resulting data will appear
associated with that key.

The RIP does not explicity define an ending registry key in the MOF edit like the
Registry Property Provider does.

The RIP is already registered in the default SMS_def.mof for SMS 2003 as
RegProv. For SMS 2.0 sites you need to add in the registration information yourself
before using it.

The best use for the RIP is for inventorying various keys that all have similar
data values that you want to inventory without creating more than one reporting class.

87

START TO FINISH GUIDE TO MOF EDITING

Chapter 8: Using the View Provider
Using MOI Exensions with Namsespaces Other Than roo\CIM 2 for fin and profi.

ay back in Chapter 3 I briefly touched on the View Provider and it’s

usefulness for SMS 2.0 clients to access namespaces other than

root\CIMV2 and root\CIMV2\SMS. This provider is not quite as
easy to use as the others, but can be extremely useful when extending your
inventory.

The View Provider can create instances of new classes based on instances of
existing classes. In other words, you can trick the SMS inventory into believing
that instances found in the data class you’ve created are there when in reality,
they are somewhere else. This can come in handy in a few situations that I’ll
go over next.

Accessing Namespaces Other Than
rootiICIMVZ2

Using WBEMTEST, you can see the instances stored in the
root\CIMV2\applications\microsoftlE namespace on my test system:

Figure 8.1

Query Result
Inztances of MicrosoftlE_Dbjsct

13 objects | max. batch: 10 \Done

MicrosoftlE_Object. PragramFile="CSurgientT erminal Object"' s
MicrogoftlE_Object. ProgramFile="DLC Class" W
MicrozoftE_Object. ProgramFile="Microzoft RDP Client Control [redist)”
MicrosoftlE_Object. ProgramFile="0ffice |pdate Installation Enging"
ticrozoftlE_Object PragramFile="{00000075-39330-0010-2000-004,4003396 71}
MicrozoftlE_Object ProgramFile="Shockwave Actives Contral!
MicrosoftlE_Dbject ProgramFile=""indows Genuine Advantage Y alidation Toal!
MicrogoftlE_Object. ProgramFile="J ava Buntime Ervironment 1.5.0"
MicrosoflE_Object PragramFile="{9F1C1144-197B-4342-BAS4-4 7484858 BA7F I
MicrosoftlE_Object. ProgramFile="J ava Runtime Environment 1.4.1"
MicrozoftE_Object. ProgramFile=" awa Runtime Environment 1.5.0"
MicrosoftlE_Dbject PragramFile="Shockwave Flash Object"!

< |

[l

|%

Add Delete

88

START TO FINISH GUIDE TO MOF EDITING

Well, suppose you wanted to inventory this information and you were running
an SMS 2.0 site. How would you get the data, since the hardware inventory
agent for SMS 2.0 doesn’t see namespaces other than the root\CIMV2 and
root\CIMV2\SMS, and this data is in the root\CIMV2\applications\MicrosoftIE
namespace?

The View Provider is the answer, of course.

This example is mainly for SMS 2.0 and educational purposes
only. ITf you are using SMS 2003 there are easier ways to do
this which 1’1l go over later. Even with SMS 2003 the View
Provider can be useful so don’t sleep through this example!

Checking out the class with WBEMTEST yields some information we need for
our MOF edit, namely, what are the properties of the class that we can query
for and should include in our edit. Double clicking on the properties and
checking qualifiers tells us that the ProgramFile property is the key property
for this class so let’s make sure to make note of that.

For SMS 2.0 you need to register the View Provider just like
the registry providers:

#pragma namespace ("\\\\.\\root\\CIMv2'™)

instance of _ Win32Provider as $ViewProv

{
Name = ""MS_VIEW_INSTANCE_PROVIDER";
Clsld = "{AA70DDF4-E11C-11D1-ABBO-00C0O4FD9159E}";
ImpersonationLevel = 1;
PerUserinitialization = "True";
}s
instance of __ InstanceProviderRegistration
{
Provider = $ViewProv;
SupportsPut = True;
SupportsGet = True;
SupportsDelete = True;
SupportsEnumeration = True;
QuerySupportLevels = {"WQL:UnarySelect"};
}s
instance of _ MethodProviderRegistration
{
Provider = $ViewProv;
};

89

START TO FINISH GUIDE TO MOF EDITING

So after using WBEMTEST and making copious notes, we’ve decided to go
after the Caption, CodeBase, Description, ProgramFile(key), SettinglD, and
Status properties of the MicrosoftlE_Objects class found in the
root\CIMV2\applications\MicrosoftlE namespace.

The resulting MOF edit using the View Provider would look like this:
#pragma namespace("\\\\-\\root\\CIMV2")

[Union,

ViewSources{"select * from MicrosoftlE_Object"},
ViewSpaces{"\\\\-\\root\\CIMV2\\applications\\MicrosoftIE"},
dynamic, provider("MS_VIEW_INSTANCE_PROVIDER")]

class MicrosoftlE_Objects

{

[PropertySources{"Caption"}] string Caption;
[PropertySources{"CodeBase"}] string CodeBase;
[PropertySources{"Description"}] string Description;
[PropertySources{"ProgramFile"},Key] string ProgramFile;
[PropertySources{"SettinglD"}] string SettingID;
[PropertySources{"Status"}] string Status;

5

//reporting class

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")
[SMS_Report(TRUE), SMS_Group_Name("MSFT_IEObjects"),
SMS_Class_ID("SMSExpert|MSFT_IEObjects|1.0")]
class MicrosoftlE_Objects : SMS_Class_Template

{

[SMS_Report(TRUE)] string Caption;
[SMS_Report(TRUE)] string CodeBase;
[SMS_Report(TRUE)] string Description;
[SMS_Report(TRUE),Key] string ProgramFile;
[SMS_Report(TRUE)] string SettingID;
[SMS_Report(TRUE)] string Status;

2

If you take the above and compile it on a test system, like I did, and then use
WBEMTEST to query the root\CIMV2 namespace, you will stumble upon the
MicrosoftlE_Object class that has mysteriously appeared, and containing all the
information thought to only previously reside in the
root\CIMV2\applications\MicrosoftlE namespace!

The resulting new class can now be inventoried, as usual, using the reporting
class just like any other inventoried root\CIMV2\SMS class.

90

START TO FINISH GUIDE TO MOF EDITING

Figure 8.2
[Lualifiers Clase
Uriion CIM_EBOOLEAN TRUE
ViewS ources CIM_STRING | CIM_FLAG_ARRAY Save Dbject
[ViewSpaces CIM_STRING | CIM_FLAG_ARRAY
Mamespace: < Show MOF
rooth iy Add Qualifier E dit Qualifier Delete Qualiier

Query Result

Instances of MicrosoftlE_Object

Cloze |

Derived

Instances

13 objectz | mawx batch: 10 Done

MicrozoftlE_Object. ProgramFile="Da5webDownload Class"
MicrosafllE_Object ProgramFile="CSurgientT erminal Object"’

MicrozoftlE_Object. ProgramFile="DLC Clazs"

MicrosaftlE_Object. ProgramFile="Microzoft RDP Client Control [redist]”
MicrozaftlE_Object. ProaramFile="0ffice Update Installation Engine'
MicrozoflE_Object. ProgramFile="{00000075-3980-0010-2000-004A003296 71
MicrosafllE_Object ProgramFile="Shockwawe Actives Contral”
MicrozoftlE_Object. ProgramFile=""indows Genuine Advantage Walidation Tool"
MicrosaftlE_Object. ProgramFile="Java Runtime Environment 1.5.0"
MicrozoflE_Object ProgramFile="{9F1C1144-1978 4942 BAS4-47A8483B B 47F "
MicrosaflE_Object ProgramFile="Java Runtime Enviranment 1.4.1"
MicrozoftlE_Object. ProgramFile="lava Buntime Ernvironment 1.5.0"

£

Add | Delste ‘

L

Fefrezh Object

Update tupe
" Create only
" Update anly
{+ Either

*+ Compatible
" Safe
" Faorce

So ... got it? Ready to move on? | wouldn’t do that to you. Let’s go through
something probably a little closer to your heart if you’re an SMS 2.0
administrator wanting to know about Internet Explorer. Let’s go through
getting Internet Explorer version information using the View Provider.

You should know that Internet Explorer information is stored in the
root\CIMV2\applications\MicrosoftlE namespace. The actual version
information can be found in the MicrosoftlE Summary class. You also now
have the general idea of how to get the class information and key fields so I’'m
just going to go through the motions quickly and then break down the actual

MOF edit.

The major properties from the MicrosoftlE_Summary class we’re going to go
after for this example are: Build, IEAKInstall, CipherStrength, Version, and the

key field Name.

To pull Internet Explorer version information using the View Provider your

MOF edit would look like so:

91

START TO FINISH GUIDE TO MOF EDITING

#pragma namespace("\\\\-\\\root\\CIMV2")

[Union,
ViewSources{"select * from MicrosoftlE_Summary"},
ViewSpaces{"\\\\-\\root\\CIMV2\\applications\\MicrosoftIE"}, Dynamic

Tolnstance, provider("MS_VIEW_INSTANCE_PROVIDER")]
class MicrosoftlE_Summary

{

[PropertySources{"Build"}] string Build;
[PropertySources{"IEAKInstall"}] string IEAKInstall;
[PropertySources{"CipherStrength"}] uint32 CipherStrength;
[PropertySources{"Version"}] string Version;
[PropertySources{"Name"},Key] string Name;

5

//reporting class

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")
[SMS_Report(TRUE), SMS_Group_Name("MSFT_Summary"),
SMS_Class_ID("SMSExpertMSFT_Summary|1.0")]
class MicrosoftlE_Summary : SMS_Class_Template
{

[SMS_Report(TRUE)] string Build;
[SMS_Report(TRUE)] string IEAKInstall;
[SMS_Report(TRUE)] uint32 CipherStrength;
[SMS_Report(TRUE)] string Version;
[SMS_Report(TRUE),Key] string Name;

2

Make sure you check the property type for each of these!l Putting string when the
property is of type uint32 will give you about 10 minutes of confusion ... trust
me, I just did it ©

Another thing you may want to think about is querying only for the information
you really need. Instead of:

ViewSources{"select * from MicrosoftlE_Summary"},
You could just as easily query for only the properties you need from the class:

ViewSources{"select Build,IEAKInstall,CipherStrength,Version,Name from
MicrosoftlE_Summary"},

This is a basic use of WQL filtering for hardware inventory, and I’ll talk about
that some more in a minute.

92

START TO FINISH GUIDE TO MOF EDITING

For SMS 2003 Advanced Clients you don’t always have to use a View
Provider. All you need is a namespace qualifier in your reporting class to
actually peer into the nonstandard namespace with your MOF edit as so:

// START - IE Objects
#pragma namespace("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report (TRUE), SMS_Group_Name ("Microsoft IE Object"),
SMS_Class_ID ("MICROSOFT]|IE_Object|1.0"),
Namespace("\\\\\\\\.\\\\root\\\\CIMV2\\\\Applications\\\\MicrosoftIE")]

class MicrosoftlE_Object : SMS_Class_Template

{

5

[SMS_Report (TRUE)] string Caption;
[SMS_Report (TRUE)] string CodeBase;
[SMS_Report (TRUE)] uint32 Description;
[SMS_Report (TRUE),Key] string ProgramFile;
[SMS_Report (FALSE)] string SettingID;
[SMS_Report (TRUE)] string Status;

//END - IE Objects#pragma namespace ("\\\\.\\root\\CIMV2\\SMS")

To get the Internet Explorer version information using the namespace qualifier to peer
into the r00/\ CIM1 2\ applications\Microsofil E namespace just use the below edit:

// BEGIN - IE Summary

[SMS_Report (TRUE), SMS_Group_Name ("Microsoft IE Summary"),
SMS_Class_ID ("SMSExpert|/IE_SUMMARY]|1.0"),
Namespace("\\\\\\\\-\\\\root\\\\CIMV2\\\\Applications\\\\MicrosoftIE")]

class MicrosoftlE_Summary : SMS_Class_Template

{

5

[SMS_Report (TRUE)] string Build;
[SMS_Report (TRUE)] string IEAKInstall;
[SMS_Report (TRUE)] uint32 CipherStrength;
[SMS_Report (TRUE)] string Version;
[SMS_Report (TRUE),Key] string Name;

// END - IE Summary

SMS 2003 can use this namespace trick to get inside hardware vendor-specific
WMI namespaces. As a matter of fact, SQL Server, Exchange, Office, IE and many
other major software packages have their own namespaces that you can use this
technique to get into. If you’re using SMS 2.0 you can still do it by using a View
Provider.

93

START TO FINISH GUIDE TO MOF EDITING

Below is an example of using the View Provider to get inside the Microsoft
SQL Server namespace (root\MicrosoftSQLServer) taken from the Microsoft
website:

http://www.microsoft.com/technet/prodtechnol/SMS/SMS2003/opsguide/ops _6ew].mspx

#pragma namespace("\\\\.\\Root\\CIMV2")
instance of __Win32Provider as $DataProv
{
Name = "MS_VIEW_INSTANCE_PROVIDER";
Clsld = "{AA70DDF4-E11C-11D1-ABB0-00C04FD9159E}";
ImpersonationLevel = 1;
PerUserlnitialization = "True";
2
instance of __InstanceProviderRegistration
{
Provider = $DataProv;
SupportsPut = True;
SupportsGet = True;
SupportsDelete = True;
SupportsEnumeration = True;
QuerySupportLevels = {"WQL:UnarySelect"};
2
[union, ViewSources{"Select * from MSSQL_Database"},
ViewSpaces{"\\\\.\\root\\MicrosoftSQLServer"}, Dynamic :
Tolnstance, provider("MS_VIEW_INSTANCE_PROVIDER")]
class SQL_Databases
{
[PropertySources("Size")] sint32 Size;
[PropertySources("SQLServerName"), key] string SQLServerName;
[PropertySources("Name"), key] string Name;
[PropertySources("SpaceAvailable")] sint32 SpaceAvailable;
2
//Also, add the following MOF to SMS_def.mof :
#pragma namespace("\\\\.\\root\\CIMV2\\SMS")
[SMS_Report(TRUE),
SMS_Group_Name("SQL Database"),
SMS_Class_ID("MICROSOFT|SQLDatabase|1.0")]
class SQL_Databases : SMS_Class_Template
{
[SMS_Report(TRUE),key]
string SQLServerName;
[SMS_Report(TRUE),key]
string Name;
[SMS_Report(TRUE)]
sint32 Size;
[SMS_Report(TRUE)]
sint32 SpaceAvailable;
2

94

START TO FINISH GUIDE TO MOF EDITING

Hopefully you can now pick out the parts of that edit—the View Provider registration,
the data class (including the WQL select statement) and the reporting class.

Using WQL Queries to Filter WMI

Information

WMI filtering using WQL queries is a good idea in general. Why search
through and mirror to root\CIMV2 a complete namespace when all you need is
one or two properties? A really good example of WMI filtering using the View
Provider can be found on Eric Holtz’s blog (slightly modified below):

http://myitforum.techtarget.com/blog/eholtz/articles/3059.aspx

Here, he is using a WQL filter to tell the inventory agent not to report back on
domain accounts—which the Win32_Account class will do by default unless
told otherwise. Imagine every SMS client you have returning every domain
account during hardware inventory and you can see why this is not a good idea.

[/ Start LocalAccount.MOF

#pragma namespace("\\\\.\\root\\CiMVv2")

[Union,

ViewSources{"select * from Win32_Account where LocalAccount=True
and SIDType=1"},

ViewSpaces{"\\\\.\\root\\CIMV2"},

dynamic, provider("MS_VIEW_INSTANCE_PROVIDER")]
class Win32_LocalUserAccount

{

[key, PropertySources{"Domain"}]

string Domain;

[key, PropertySources{"Name"}]

string Name;

k

#pragma namespace("\\\\.\\root\\CIMV2\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Local User Account"),
SMS_Class_ID("MICROSOFT|LOCAL_USER_ACCOUNT]1.0"]

class Win32_LocalUserAccount: SMS_Class_Template
{

[key, SMS_Report(TRUE)]

string Domain;

[key, SMS_Report(TRUE)]

string Name;

I

/ /- End SMS_def.mof addition

95

START TO FINISH GUIDE TO MOF EDITING

?

Chapter Summary

Review

The View Provider can create instances of new classes based on instances of existing
classes by mirroring data residing in different classes to the 700\ CIM172 namespace.

The View Provider is already registered in the default SMS_def.mof for SMS
2003 as MS_VIEW_INSTANCE_PROVIDER. For SMS 2.0 sites you need to add in
the registration information yourself before using it.

The View Provider is used mainly for SMS 2.0 to inventory namespaces other than
r00\\CIM12 and oo\ CIMT72\SMS. SMS 2003 sites can use the namespace qualifier
to do this much easier.

The View Provider can be used to perform WQL filtering similar to SQL statements.

96

START TO FINISH GUIDE TO MOF EDITING

Chapter 9:

Static Hardware Inventory Extensions

10 do great work, a rmaan mmst be very idl as 1well as very industrions.
—Sarmel Butler

depending on your personal level of scripting expetience, relatively easy—at

least in theory. Static MOF extensions are simply static data in MOF format

that is added to the SMS hardware inventory. There are many ways to do this
and I'm going to talk about three of them here:

E xtending hardware inventory for static data is fairly straightforward and

» Static MOF files
» NOIDMIF files

» IDMIF files

Static MOF Files

Static MOF files are simply ‘mini-MOJF” files compiled on a machine to store system-
specific information. These files are an easy way to maintain static data, but you won’t
be able to retrieve dynamic data, or data that changes on a regular basis with static
MOF files.

To utilize the special powers of the static MOF you must edit the ‘mini-MOF’ to
reflect the information you want and then compile it on the local system to store the
data in the system’s WMI repository. If the data changes, you’ll have to go in and
manually edit the file and re-compile the MOF to overwrite the old information stored
in WML

Static MOF files are really easy to create. Their format is exactly the same as a
‘normal’ MOF edit except that they contain instance data. All you really need
to remember is that you must create a data class and then tell SMS inventory
what data, or instances, go with the data class for that particular machine.

97

START TO FINISH GUIDE TO MOF EDITING

In the below example from the Microsoft website, you can see that the data
class called Static_ MOF is created (you’re allowed to be more imaginative, of
course) and then instances of the Static_ MOF class are created. This would be
your ‘mini-MOF’:

#pragma namespace ("\\\\.\\root\\CIMV2")
class Static_MOF

{
[key]
string user;
string office;
string phone_number;
2
instance of Static_MOF
{
user = "John Smith";
office = "Building 4, Room 26";
phone_number = "(425) 707-9791";
7
instance of Static_MOF
{
user = "Denise Smith";
office = "Building 4, Room 26";
phone_number = "(425) 707-9790";
2

This static MOF would need to be compiled locally using MOFCOMP. Once
you’ve done this, you just treat it like any other MOF edit and create the
reporting class in your SMS_def.mof stored on the site server:

#pragma namespace ("\\\\-\\root\\CIMV2\\SMS")
[SMS_Report (TRUE),
SMS_Group_Name ("Static Assetinfo MOF"),
SMS_Class_ID ("MICROSOFT]|Static_MOF|1.0")]
class Static_MOF : SMS_Class_Template
{
[SMS_Report(TRUE), key]
string user;
[SMS_Report(TRUE)]
string office;
[SMS_Report(TRUE)]
string phone_number;
2

98

START TO FINISH GUIDE TO MOF EDITING

Because you must manually compile the static MOF using MOFCOMP every time
something changes, this is not the best idea for information that changes a lot.

Sure, this is kind of a pain, but I'll bet there are a few systems out there that you would
like to have this capability of manually adding in static inventory information, right?
How about serial numbers for specific software or license numbers? Use your
imagination and I’m sure you can come up with some scenario that will work in your
situation.

NOIDMIF and IDMIF Files in General

Management Information Format (MIF) files are used to collect inventory information
by SMS. By creating custom MIF files you can extend hardware inventory in ways
similar to the static MOF example. These files are indeed static, but interact with SMS
in different ways.

The main difference between NOIDMIF files and IDMIF files is that NOIDMIF files
are information relating to an existing client system—they have an ID so none is
needed, thus the name NOIDMIF.

IDMIF files contain data for a non-client system or for an object not already in the
database. These files can pertain to stand-alone systems for which you want some kind
of inventory data, or other things, like printers, people, etc. Because the data is not
associated with a known entity, the IDMIF must contain a unique identifier to tell SMS
to exactly what this information is referring. This is what puts the ID in IDMIF.

To enable MIF file collection, open the administrator console and browse to Systems
Management Setver\Site Database\Site Hierarchy\[Site Code]\Client Agents. Right
click on Hardware Inventory Client Agent and then properties, and finally, click on
the MIF Collection tab.

On the MIF Collection tab you will see the various check boxes controlling MIF
collection properties for both Legacy Clients and Advanced Clients. Simply check the
box that corresponds to your MIF collecting wishes and you’re site will be all set to
collect these little critters from your clients at their next hardware inventory cycle.

99

START TO FINISH GUIDE TO MOF EDITING

Figure 9.1

Hardware Inventory Client Agent Propertie e

General MIF Collection

Specify whether to collect MIF files from Legacy or Advanced SMS Clients.
These files are used to extend client inventary.

IDMIF filex are uzed to extend definitions of client architecture or to define
new clients, whereas NOIDMIF files are used to extend the properties that
are inventoried on clisnts.

— Legacy Client
W Collect IDMIF files

Iv Callect HOIDMIF files

—Advanced Client

Iv Callect HOIDMIF files

kK I Cancel Apply Help

Just so you know at this point—these MIF files aren’t really “collected” as the action
implies. They are simply read by the inventory agents and their data is added to the
system’s hardware inventory sent to the site server.

Going back a tab to the General tab you will notice some more MIF information at the
bottom. Regardless of whether the MIF file is a NOIDMIF or IDMIF, the maximum
custom MIF file size processed by SMS is 250kb by default. This can be adjusted if you
feel your inventory MIF files will be larger than this by adjusting the MIF size value in
the hardware inventory client agent properties. This is an important factor to note. If
your MIF file is too large or syntactically incorrect, it will be moved to a BADMIFS
folder and ignored by hardware inventory.

The maximum custom MIF size can be set in kb’s by changing the bottom text box on
the General tab as in Figure 9.2.

100

START TO FINISH GUIDE TO MOF EDITING

Figure 9.2

Hardware Inventory Client Agent Prupertie: e

General | MIF Collection

Hardware Inventory Client Agent

¥ Enable hardware inventory on clients

— Inwventom schedule

& Simple schedule

Bun even: 7 ::II Days j

" Full scheduls
[Hecurs even 7 day(s] effective 17:17 Ak S aturday, Apnil 15,

2[00E;
Sehedule.. |

Marimumn custom MIF file size (kb el _:l

kK I Cancel | Apply | Help

These inventory extensions do not require modifying the SMS_def.mof. Everyone
see that? I’m using this section to acquaint you with other methods for collecting
inventory information, just so you will know about some other options. Let’s face it,
sometimes making an actual SMS_def.mof modification isn’t the best way to go.

NOIDMIF Files

NOIDMIF files are stored locally on client systems. They do not need to be compiled
by MOFCOMP, and do not interact with the local system WMI at all. The
NOIDMIF file is read by hardware inventory and processed alongside the “normal”
hardware inventory data. The information from the NOIDMIF is then added to the
hardware inventory information of the client system where it was found.

SMS won’t go playing hide and seek with your systems to find these MIF files; they
must be stored in a particular folder created just for them. NOIDMIF files must be
stored in a special NOIDMIF directory:

» Advanced Clients: %W indir%o\Systens32\ CCM\ Inventory\ Noidpzifs

» Legacy Clients: %Windir%\MS\SNS\ Noidpifs

101

START TO FINISH GUIDE TO MOF EDITING

So what happens if I delete the NOIDMIF file from the clients?

If the NOIDMIF file is deleted, when the next hardware inventory is run, the
inventory data is deleted from the database data table but remains in the database
history table for the class previously created by the NOIDMIF file.

If you do not want your NOIDMIF to create a history table for this reason, you can
give your NOIDMIF an .NHM extension instead of .MIF. An .NHM or No History
MIF file will only populate the data table for your class with information.

So that should suffice for background here, considering 'm going a little off-topic. I'll
just run you through creating and using a NOIDMIF file real quickly ...this ought to
be about as quick as boiling an egg over an open fire in Alaska while ice fishing, but
here we go.

The first thing you need to know about using a NOIDMIF file is the format of the file
itself. I’ll try to make this easy so I don’t confuse you here and list the key parts and
what they’re used for—these are my own definitions, in case you are wondering if
Webster took the day oft:

Component: There can be only one component per NOIDMIF. Start your NOIDMIF with
Start Component and end the NOIDMIF with End Component.

Group: The name this information will appear under in a Resource explorer view of a
client system. This will also become the table name in the SMS database except that the
spaces will be replaced with underscores.

Attribute: These are the data properties that you are inventorying and are associated with
the group name.

There is an excellent example of using a NOIDMIF file in the SMS 2003 Operations
Guide. Rather than try to improve upon the hard work of the Microsoft technical
writers, I'll borrow from their example and try to expound upon the key areas I think
are important.

The example is called “Creating a Class by Using a NOIDMIF File”. T’ll summarize
the scenario for you by just detailing the high points and objective of the example as
best I can. Basically, what is going on here is that you, as an SMS administrator for
Wide World Importers, need to be able to store computer asset numbers in your
database so that they are available for queries and asset management.

To do this, you will use a NOIDMIF file. Here is the resulting NOIDMIF file that is
created to accomplish this task:

102

START TO FINISH GUIDE TO MOF EDITING

Start Component

Name = "'System Information" Start Group
Name = "Wide World Asset Numbers™ ID =1
Class = "wideWorldAssetNumbers" Key = 1
Start Attribute
Name = "Computer Asset Number"™ ID=1
Type = String(10)
Value = "414207" End Attribute
End Group

End Component

Here’s how to create that NOIDMIF file using a text editor, as taken from the
SMS 2003 Operations Guide:

1. Type the following line to begin the NOIDMIF file:
Start Component

2. You must always add a component and name the component when you create a
NOIDMIF file.

3. Type the following line to name the component:
Name = "System Information"

4. By using a general name such as System Information, this component becomes
more flexible. You can then use it to add any information you want to maintain for
this client by adding new groups to the existing NOIDMIF file.

5. Type the following line to add the Display Name for the new Wide World
Importers Asset Numbers class:

Start Group
Name = “Wide World Importers Asset Numbers”

6. The Name property is the string that administrators see in Resource explorer to
refer to this class. Wide World Importers Asset Numbers is a DMTF group class.
When SMS first loads this group, it creates a WMI class called
SMS_G_wide_world_asset_numbers.

7. After you add properties, even if you add only a single property, you need to add a
group to contain your new properties.

8. Type the following line to give the Wide World Importers Asset Numbers class a
group ID number:

D=1

9. Use any method to determine the unique ID number for each group and property, if
the 1D number is unique for groups within this component.

103

START TO FINISH GUIDE TO MOF EDITING

10. Type the following line to add the wideWorldimportersAssetNumbers class:
Class = “wideWorldimportersAssetNumbers”
11. The class information is used for processing and is never seen by administrators.
12. Type in the following line to add the key property:
Key=1

13. This entry indicates that the first property listed is the key. Key properties are
unique properties that identify instances of a certain class. Whenever you have
more than one instance of a class, you must include at least one key property, or
the subsequent instances of the class will overwrite the previous instances. If no
key properties are defined for a NOIDMIF file on a client running a 32-bit operating
system, all the properties are designated as key by the inventory process. This
does not occur for IDMIF files or for NOIDMIF files on clients running 16-bit
operating systems.

14. Type the following lines to add the first property:

Start Attribute

Name = “Computer Asset Number’ID = 1
Type = String(10)

Value =“414207"End Attribute

15. You must set an ID number for this property, name the property, and then specify a
data type. The ID number you choose must be unique within the group. Only three
data types are recognized by the system: integer, string, and specially formatted
DateTime string. You must also specify a valid value for the data type you
selected.

There you go, everything you’ve ever wanted to know about the NOIDMIF. |
could go on and on about the NOIDMIF, but this book only has room for one
ASCII type file star and that’s the SMS_def.mof. Just know that if you ever
want to get information into your SMS database for your client systems without
modifying the SMS_def.mof this one of the ways to do it.

IDMIF Files

Remember that you use IDMIF files to add non-client systems, or other items such as
printers to the SMS site database. Without getting too technical, let me say that IDMIF
files are identical to NOIDMIF files except that you have to provide an architecture
name and unique ID in a header at the top of the file.

This IDMIF header is really just a couple of comments. These are important
comments, though. They must be formatted as so (including the <>’s):

104

START TO FINISH GUIDE TO MOF EDITING

/ / Architecture<ArchitectureName>
//UniquelD<999>

Of course, your architecture name and unique ID number would be different, but you
get the idea.

There can be many instances of a class in your database—the unique 1D is basically
the key for this instance. Without a key, each successive instance will overwrite the
previous instance(s) in the database.

You must have a top-level group with the same class as the architecture name, and that
group must have at least one property. Remember that each instance of a class must
have one key property to differentiate the instances of the class. That wasn't confusing,
was it? Read this over a couple of times and it will sound just like the key properties of
data classes in our regular MOF editing experiences together.

IDMIF files must be stored in a special IDMIF directory:
» Advanced Clients: %W indir%o\Systen32\ CCM\ Inventory\idmifs

» Legacy Clients: %W indir%o\MS\SMS\idnifs

The following is an example of a simple IDMIF file from the SMS 2003 Operations
Guide:

// Architecture<Widget>
//Uniqueld<414207>
Start Component
Name = "System Information" Start Group
Name = "Widget Group" 1D =1
Class = "Widget" Key=1
Start Attribute
Name = "Widget Asset Numbet" ID =1
Type = String(10)
Value ="414207" End Attribute
End Group
End Component

105

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

Static hardware inventory extension methods are only as current as their
creation date/time. To retrieve current data, they must be recreated, and also
re-compiled, on a regular basis unless the data does not change.

Management Information Format (MIF) files are used to collect inventory
information by SMS in a different way than MOF files. MIF files do not require
compilation or reporting classes added to the SMS_def.mof. They are read
by hardware inventory and their data is added to the inventory report.

NOIDMIF files are SMS client machine specific and are stored in the
following locations:

» Advanced Clients: %Windir%o\ Systens32\ CCM\ Inventory\ Nozdmifs

» Legacy Clients: %Windir’o\MS\SMS\ Noidnifs
IDMIF files are not associated with a specific SMS client machine and you
have to provide an architecture name and unique ID in a header at the top of the

file.

IDMIF files must be stored in a special IDMIF directory:
» Advanced Clients: %Windir%o\System32\ CCM\ Inventory\idnifs

» Legacy Clients: %Windir’o\MS\SMS\idmifs

Maximum MIF file size by default in SMS is 250KB.

Component: There can be only one component per NOIDMIF. Start your NOIDMIF with
Start Component and end the NOIDMIF with End Component.

Group: The name this information will appear under in a resource explorer view of a client
system. This will also become the table name in the SMS database except that the spaces
will be replaced with underscores.

Attribute: These are the data properties that you are inventorying, and are associated
with the group name.

106

START TO FINISH GUIDE TO MOF EDITING

Chapter 10:
Scripted Hardware Inventory

Extensions

s abyays been and abyays will be the sanse in the sworld:"The horse does the swork and

writing MOF, NOIDMIF or IDMIF files. Scripts can even be used to write

information directly into a system’s WMI. The easiest way to do this is by using

a scripting language to write static files. I'll go through that first, and then give
examples of using scripts to actually read system information and write it to WMI for
more advanced inventory capabilities.

f ; cripted extensions can be used to add information to hardware inventory by

Static File Scripted Extensions

For simple, static MOF, NOIDMIF, and IDMIF files you can use any scripting
language you prefer that is capable of writing a text file. Learning how to do this is
beyond the scope of this book, but I'll give you some examples of scripts here—after
that, you are on your own!

The general idea for writing these static files from scripts is to just format the static
data to be syntactically correct for the type of file you’re writing—MOF, NOIDMIF,
or IDMIF. Your script writes the file, as well as the data to be reported. If you can
write a .BAT or .VBS script to create a text file, a little playing around with the static
inventory examples throughout this book should get you going in no time.

I don’t think I need to go into how to write a static MOF file; just use a script to write a
file that looks like a ‘mini-MOF’ and compile it. Creating NOIDMIF files, however, is
always challenging because of the format and required field structure involved.

Finding good examples of them is also pretty hard for most people.

107

START TO FINISH GUIDE TO MOF EDITING

So, just as a quick, and hopefully fun, example I'm going to show you how to use a
script to add flip flop slang name information to your SMS database by writing a
NOIDMIF file.

Of course, this will probably never be a requirement for you, but I think using a silly
example will help you to understand the concept a little easier than going through the
Win32_PhysicalMemory class again, right? Someone tell me I'm right; my wife thinks
I’ve gone crazy at this point.

This example .VBS script will create a NOIDMIF file to get flip flop slang names from
a few different countries into your SMS database. Just copy and paste the below script
into notepad, name it flipflop.VBS and run it. The NOIDMIF, which is named
NOIDMIF_Format.MIF, will be created in the same folder the script is run from:

Set fso = CreateObject("Sctipting.FileSystemObject")

Set f1 = fso.createTextFile("NOIDMIF_Format.MIF",2 False)

f1.writeLine "Start Component”

fl.writeLine " Name = " & Chr(34) & "NOIDMIF Example" & Chr(34)
fl.writeLine " Start Group"

fl.writeLine " Name =" & Chr(34) & "Flip Flop Information" & Chr(34)
fl.writeLine " ID =1"

fl.writeLine " Class =" & Chr(34)&"SMSExpert | Flip Flop Information|1.0"&Chr(34)
fl.writeLine " Start Attribute"

f1.WriteLine " Name = " & Chr(34) & "New Zealand Name" & Chr(34)
f1.WriteLine " ID =1"

f1.Writeline" ACCESS = READ-ONLY"

f1.Writeline " Storage = Specific"

f1.WriteLine " Type = String"

f1.WriteLine " Value =" & Chr(34) & "jandals (Japanese Sandals)" & Chr(34)
f1.WriteLine " End Attribute"

fl.writeLine " Start Attribute"

f1.WriteLine " Name = " & Chr(34) & "Australian Name" & Chr(34)
f1.WriteLine " ID = 2"

f1.Writeline" ACCESS = READ-ONLY"

f1.Writeline " Storage = Specific"

f1.WriteLine " Type = String"

f1.WriteLine " Value =" & Chr(34) & "thongs" & Chr(34)

f1.WriteLine " End Attribute"

fl.writeLine " Start Attribute"

f1.WriteLine " Name = " & Chr(34) & "South African Name" & Chr(34)
f1.WriteLine " ID = 3"

f1.Writeline" ACCESS = READ-ONLY"

f1.Writeline " Storage = Specific"

f1.WriteLine " Type = String"

f1.WriteLine " Value =" & Chr(34) & "thongs ot slops" & Chr(34)
f1.WriteLine " End Attribute"

fl.writeLine " End Group"

f1.writeLine "End Component”

fl.close

108

START TO FINISH GUIDE TO MOF EDITING

The result of running the above script is a NOIDMIF that looks like this:

Start Component
Name = "NOIDMIF Example™
Start Group
Name = "Flip Flop Information"
ID=1
Class = "'SMSEXPERT|Flip Flop Information]|1.0"
Start Attribute
Name = "New Zealand Name"
D =
ACCESS = READ-ONLY
Storage = Specific
Type = String
Value = "jandals (Japanese Sandals)"
End Attribute
Start Attribute
Name = "‘Australian Name"
ID=2
ACCESS = READ-ONLY
Storage = Specific
Type = String
Value = "thongs™
End Attribute
Start Attribute
Name = "South African Name'
ID=3
ACCESS = READ-ONLY
Storage = Specific
Type = String

Value = '"thongs or slops"
End Attribute
End Group

End Component

If you were to drop this flip flop NOIDMIF into your SMS client’s noidmifs folder
and run a hardware inventory, the flip flop NOIDMIF file will be read and processed
by SMS as inventory information associated with that particular system.

You'll be rewarded with all the flip flop slang information you’ll ever need in your SMS
database!

109

START TO FINISH GUIDE TO MOF EDITING

Figure 10.1
'

File Action Wiew Help

A== e R,

= Disk Pattitions ;I Australian Marme | New Zealand Mame I South African Name

- Flip Flop Infol

' =)
5 IDE Controller -
1| | »

thongs jandals {Japanese Sandals) thongs or slops

Simply remove the flip flop NOIDMIF from your client’s noidmifs folder
(%WINDIRY\Systens32\ CCM\ Inventory\Noidmifs for Advanced Clients) and this
information will disappear from the resource explorer view for the system and your
SMS database’s data tables, but not the history tables. The data will disappear, that is, not
the tables themselves. You’ll still be stuck with flip flop information data and history
tables, as well as their related views, until you remove them from your database

Special note here in case you’ve been playing with my flip flop NOIDMIF example
and are now trying to find some way to get rid of those silly tables. DO NOT just go
into SQL and manually delete those tables! You can use the Microsoft DELGRP.EXE
utility to remove those tables that were created when SMS processed the NOIDMIF.
DELGRP.EXE and SMS Expert’s Site Sweeper utility—which | prefer—will be
discussed more in Chapter 13, Cleaning Up.

Scripting to pull data from a system is a little more complicated. Using a scripting
language you can harness the power of the language you’ve chosen to query the system
and then write custom inventory data to the local system’s WMI repository.

Usually you will find most examples to do this in visual basic script (VBS). The
inventory scripts found at www.SMSFExpert.com are .VBS scripts, for example. Visual
basic scripts are probably the easiest way to tie into WMI as well, for either querying
for information and creating .MIF files, or for writing straight to WMI itself.

An excellent example of using a .VBS script to write a NOIDMIF file from reading
system information is shown below. This example comes from Michael Leonard and
uses visual basic scripting to read DHCP & DNS/WINS information from SMS 2003
Advanced Clients. Michael is an enterprise admin and needed a way to extract this
information from his client systems to ensure they were being configured properly. He
created the .VBS script to extract the information and then ran an advertised program
weekly to collect and update the data.

This appears to be a pretty long script when formatted for this book, but trust me; it’s
an excellent script, as well as an excellent example for this section. Thank you, Michael!

110

START TO FINISH GUIDE TO MOF EDITING

' VBS - Read DHCP & DNS/WINS config info and put to MIF file for SMS
' for W2K & better workstations/servers
'04/27/2005 MA.Leonard, State of Nebraska, Dept of Information Technology

Dim WSHShell, wDir, FSO, ObjExec, flenm
Dim sttFromProc, rtncd

Set WSHShell = CreateObject("WScript.Shell")
Set FSO = CreateObject("Scripting.FileSystemObject")

' NOIDMIF files must be stored in the following folder
on Advanced Clients: %Windir%\System32\CCM\Inventory\Noidmifs
on Legacy Clients: % Windir% \MS\SMS\Noidmifs

" make sure users have write/modify permission to the folder

wDir = WSHShell. ExpandEnvironmentStrings("%Windir%")
Const adclnt = "\System32\CCM \Inventory\Noidmifs"
Const lgclnt = "\MS\SMS\Noidmifs"

function CkDir()
' Check for SMS subdir/folder, if not there terminate
if FSO.FolderExists(wDir & adclnt) Then
Set flenm = FSO.CreateTextFile(wDir & adclnt & "\SMSipcfg.mif", True)
CkDir = True
else
If FSO.FolderExists(wDir & lgclnt) Then
Set flenm = FSO.CreateTextFile(wDir & lgclnt & "\SMSipcfg.mif", True)
CkDir = True
else
CkDir = False
end if
end if
end function

Sub procDhep()
if curtln = "" then
fndpos = 0

fndpos = InStr(1,sttFromProc,"DHCP enabled”,1)
if fndpos > 0 then
tndpos = 0
fndpos = InStr(1,sttFromProc,":",1)
if fndpos > 0 then
tmpval = ""
tmpval = Trim(Mid(sttFromProc,tndpos + 1))
wrkfld =" Start Attribute" & VBCrLf
wrkfld = wrkfld & " Name = ""DHCP Value""" & VBCrLf
wrkfld = wrkfld & " ID = 1" & VBCrLf
wrkfld = wrkfld & " Type = String(3)" & VBCtLf
wrkfld = wrkfld & " Value =" & """ & tmpval & """ & VBCtLf

m

START TO FINISH GUIDE TO MOF EDITING

wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm.Write wrkfld
curtln = "dhep"
prevlin =""
end if
end if
end if

end sub

Sub proclpAddr()
if curtln = "" then
tndpos = 0
fndpos = InStr(1,sttFromProc,"IP address",1)
if fndpos > 0 then
tndpos = 0
fndpos = InStr(1,sttFromProc,":",1)
if fndpos > 0 then
tmpval = ""
tmpval = Trim(Mid(sttFromProc,tndpos + 1))
wrkfld =" Start Attribute" & VBCrLf
wrkfld = wrkfld & " Name = ""IP Address""" & VBCrLf
wrkfld = wrkfld & " ID = 2" & VBCtLf
wrkfld = wrkfld & " Type = String(15)" & VBCrL{

wrkfld = wrkfld & " Value =" & """ & tmpval & """ & VBCtLf

wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm.Write wrkfld
curtln = "ipadds”
prevln =""
end if
end if
end if

end sub

Sub procDns()
if curtln = "" then
fndpos = 0
fndpos = InStr(1,sttFromProc,"DNS",1)
if fndpos > 0 then
fndpos = 0
fndpos = InStr(1,sttFromProc,"Static",1)
if fndpos > 0 then
tmpval = "Yes"
else
tmpval = "No"
end if
wrkfld =" Start Attribute" & VBCrLf
wrkfld = wrkfld & " Name = ""Static DNS""" & VBCrLf
wrkfld = wrkfld & " ID = 3" & VBCrLf
wrkfld = wrkfld & " Type = String(3)" & VBCrLf

112

START TO FINISH GUIDE TO MOF EDITING

wrkfld = wrkfld & " Value =" & """" & tmpval & """" & VBCtLf
wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm.Write wrkfld

fndpos = 0
fndpos = InStr(1,sttFromProc,":",1)
if fndpos > 0 then
tmpVa — nn
tmpval = Trim(Mid(sttFromProc,fndpos + 1))
wrkfld =" Start Attribute" & VBCtLf
wrkfld = wrkfld & " Name = ""Primary DNS Value""" & VBCrLf
wrkfld = wrkfld & " ID = 4" & VBCtLf
wrkfld = wrkfld & " Type = String(15)" & VBCrLf
wrkfld = wrkfld & " Value =" & """ & tmpval & """ & VBCrLf
wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm.Write wrkfld
curtln = "dns"
previn = "dns"

end if
else
if prevln = "dns" then
tmpval = ""
tmpval = Trim(Mid(strtFromProc,1,15))
if tmpval = "" then

tmpval = Trim(strFromProc)
wrkfld =" Start Attribute" & VBCtLLf
wrkfld = wrkfld & " Name = ""Secondary DNS Value""" & VBCtLf
wrkfld = wrkfld & " ID = 5" & VBCtLf
wrkfld = wrkfld & " Type = String(15)" & VBCrLf
wrkfld = wrkfld & " Value =" & """ & tmpval & """ & VBCtLf
wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm. Write wrkfld
curtln = "dns"
previn = "dns"
end if
end if
end if
end if
end sub

Sub procWins()
if curtln = "" then
fndpos = 0
fndpos = InStr(1,sttFromProc,"WINS",1)
if fndpos > 0 then
fndpos = 0
fndpos = InStr(1,sttFromProc,"Static",1)
if fndpos > 0 then
tmpval = "Yes"

113

START TO FINISH GUIDE TO MOF EDITING

else
tmpval = "No"
end if
wrtkfld =" Start Attribute" & VBCrLf
wrkfld = wrkfld & " Name = ""Static WINS""" & VBCrLf
wrkfld = wrkfld & " ID = 6" & VBCrLf
wrkfld = wrkfld & " Type = String(3)" & VBCtLf
wrkfld = wrkfld & " Value =" & """" & tmpval & """" & VBCtLf
wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm.Write wrkfld

tndpos = 0
fndpos = InStr(1,sttFromProc,":",1)
if fndpos > 0 then
tmpval = ""
tmpval = Trim(Mid(sttFromProc,tndpos + 1))
wrkfld =" Start Attribute" & VBCtLf
wrkfld = wrkfld & " Name = ""Primary WINS Value""" & VBCrLf
wrkfld = wrkfld & " ID = 7" & VBCtLf
wrkfld = wrkfld & " Type = String(15)" & VBCrLf
wrkfld = wrkfld & " Value =" & """ & tmpval & """ & VBCrLf
wrkfld = wrkfld & " End Attribute" & VBCrLf

flenm.Write wrkfld
curtln = "wins"
previn = "wins"

end if

else

if prevln = "wins" then
tmpval = ""
tmpval = Trim(Mid(sttFromProc,1,15))
if tmpval = "" then

tmpval = Trim(strtFromProc)
wrkfld =" Start Attribute" & VBCtLLf
wrkfld = wrkfld & " Name = ""Secondary WINS Value""" & VBCrLf
wrkfld = wrkfld & " ID = 8" & VBCtLf
wrkfld = wrkfld & " Type = String(15)" & VBCrLf
wrkfld = wrkfld & " Value =" & """ & tmpval & """ & VBCtLf
wrkfld = wrkfld & " End Attribute" & VBCrLf
flenm. Write wrkfld
cuttln = "wins"
previn = "wins"
end if
end if
end if
end if

end sub

Sub endgroup()

114

START TO FINISH GUIDE TO MOF EDITING

wtkfld =" End Group" & VBCrLf & VBCtLf

flenm. Write wrkfld
grpopen = 0
end sub

! stkokskokskokokskskkokskkokskskokokskkokskskokokskkokskskokskskokokskskokskskokskskkokskskokskkokokskskokskkokokskskokskskoksk sk koksk kokok

" This is the main proc
"use NetShell to get only active adapters
"and have report piped into I/O object for reading

rtned = CkDir()
if rtned then
Set ObjExec = WSHShell. Exec("Netsh interface ip show config")
grpopen = 0
adptnum = 0
Do
sttFromProc = ObjExec.StdOut.ReadLine()
if sttFromProc <> "" then
tmpval = ""
tmpval = LCase(Left(Trim(sttFromProc),6))
if tmpval = "config" then
if grpopen = 1 then endgroup()
fndpos =1
fndpos = InStr(1,sttFromProc,"local",1)
if fndpos > 0 then
adptnum = adptnum + 1
grpopen = 1
if adptnum =1 then
wrkfld = "Start Component" & VBCrLf
wrkfld = wrkfld & "Name = ""System Network Information""" & VBCrLf
flenm.Write wrkfld
end if
wrkfld =" Start Group" & VBCrLf
wrtkfld = wrkfld & " Name = ""Network IP Config""" & VBCtLf
wrkfld = wrkfld & " ID =" & adptonum & VBCrLf
wtkfld = wrkfld & " Class = ""networkipconfig""" & VBCrL{
wrkfld = wrkfld & " Key = 1" & VBCrLf
flenm.Write wrkfld
adptsw = 1
prevln = ""
else
if grpopen = 1 then endgroup()
adptsw = 0
end if
else
if adptsw = 1 then
curtln ="
procDhcep()
proclpAddr()
procDns()

115

START TO FINISH GUIDE TO MOF EDITING

procWins()
else
" nop
end if
end if
end if
Loop While Not ObjExec.Stdout.atEndOfStream
if grpopen = 1 then endgroup()
if adptnum > 0 then
wrkfld = "End Component" & VBCrLf
flenm. Write wrkfld
end if
flenm.Close
else
" WSctipt.Echo "No SMS client folder found"
end if

The above script will process for multiple adapters and for more than two DNS, two
WINs, and one IP entry, but will not create the MIF file key fields properly. This was
by design, and it causes a MIF processing error at inventory time. These errors were
captured in some error reports that Michael had created to catch multiple active
adapters and more than their normal two DNS and WINS entries.

Running the script will create a NOIDMIF file named SMSipcfg.mif, appearing
similar to the one shown below for a system using DHCP without static DNS or

WINS entries:

Start Component
Name = "System Network Information"
Start Group
Name = "Network IP Config"
ID=1
Class = "networkipconfig"
Key =1
Start Attribute
Name = "DHCP Value"
ID=1
Type = String(3)
Value = "Yes"
End Attribute
Start Attribute
Name = "Static DNS"

ID=3
Type = String(3)
Value = "No"

End Attribute
Start Attribute

116

START TO FINISH GUIDE TO MOF EDITING

Name = "Static WINS"
ID=6
Type = String(3)
Value = "No"
End Attribute

End Group

End Component

Scripts That Write Directly to WMI

Creating scripts that write directly to WMI is considerably more complicated than
writing a static MOF file by scripting. This isn’t a book about scripting so I won’t go
into much more detail on it here. There is a good example of a script that writes

directly to WMI in the Systems Management Server 2003 Operations Guide
(http://www.microsoft.com/technet/prodtechnol/sms/sms2003/opsguide/ops 9p7

p.mspx?’mfr=true) that I'll share with you here. For more information about how to
accomplish this scripting feat consult the SMS 2003 Operations Guide and the SMS
2003 Software Development Kit

(http: . .
45bb-bb77-163446068ef6&Displayl ang=en).

Set loc = CreateObject("WbemScripting.SWbemLocator')
Set WbemServices = loc.ConnectServer(, "'root\CIMv2")
On Error Resume Next
Set WbemObject = WbemServices.Get("'SMS_AssetWizard_1")
"If this call failed, we need to make the SMS_AssetWizard 1 data class
IT Err Then
"Retrieve blank class
Set WbemObject = WbemServices.Get
"Set class name
WbemObject.Path_.Class = "SMS_AssetWizard_1" "Add Properties (8 =
CIM_STRING, 11 = CIM_BOOLEAN)
WbemObject.Properties_.Add "Type', 19
WbemObject.Properties_.Add "ContactFul IName™, 8
WbemObject.Properties_.Add "ContactEmail', 8
WbemObject.Properties_.Add 'ContactPhone™, 8
WbemObject.Properties_.Add "ContactLocation"™, 8
WbemObject.Properties_.Add "SysLocationSite", 8
WbemObject.Properties_.Add ''SysLocationBuilding, 8
WbemObject.Properties_.Add "SysLocationRoom", 8
WbemObject.Properties_.Add "SysUnitManufacturer™, 8
WbemObject.Properties_.Add "SysUnitModel', 8
WbemObject.Properties_.Add "SysUnitAssetNumber', 8
WbemObject.Properties_.Add "SysUnitlsLaptop", 11
"Add key qualifier to Type property
WbemObject.Properties_("Type'™) .Qualifiers__.Add "key", True
WbemObject.Put_
End if
On Error Goto O
Set WbemServices = loc.ConnectServer(, "root\CIMv2™)
Set WbemObject = WbemServices.Get("'SMS_AssetWizard_1'") .Spawnlnstance_
" Store property values (the datal)
WbemObject.Type = 0
WbemObject.ContactFul IName = "John Smith"
WbemObject.ContactEmail = "JSmith"
WbemObject.ContactPhone = '"(425) 707-9791"
WbemObject.ContactlLocation = ""Redmond"’
WbemObject.SysLocationSite = "Campus"
WbemObject.SysLocationBuilding = 24"

x?FamilylD=58833cd1-6dbb-

\

1

\

I

\

\

1

\

\

117

START TO FINISH GUIDE TO MOF EDITING

WbemObject.SysLocationRoom = "1168"
WbemObject.SysUnitManufacturer = "Dell"
WbemObject.SysUnitModel = "GX1"
WbemObject.SysUnitAssetNumber = "357701"
WbemObject.SysUnitlsLaptop = False

"WMI will overwrite the existing instance
WbemObject.Put_

118

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

Scripted extensions can be used to add information to hardware inventory by
writing MOF, NOIDMIF, IDMIF files or directly to client WMI repositories.

Using a scripting language you can harness the power of the language you’ve chosen to
query the system and then write custom inventory files or data directly to the local
system’s WMI repository.

Scripted hardware inventory extension methods basically create static inventory files or
WMI additions. These inventory additions are only as current as their creation
date/time. To retrieve current data, they must be re-run or their output files re-
compiled on a regular basis unless the data does not change.

Scripted inventory extensions are primarily used when there is no other available
method to retrieve the inventory data. Finding data stored in the
HKIM\CURRENT_USER registry key is a good example.

119

START TO FINISH GUIDE TO MOF EDITING

Chapter 11.
It's Better To Test Now Than Be Testy

Later

Itnaasn't raining when Noab bl the ark.
~Howard Ruff

all the moving parts before take-off? Kind of makes sense that the pilot

would want to make sure everything was in working order before taking off

and being 10,000 feet in the air before realizing that the plane was missing a
part right?

H ave you ever watched a pilot walk around an aircraft touching and checking

Well, modifying SMS hardware inventory is really no different. No, you won’t fall
10,000 feet if something goes wrong, but hiding under your office desk until everyone
else goes home is a real possibility if things go terribly wrong!

Just like a pilot checking to ensure both wings are still attached to the aircraft, you
should be checking and testing all of your changes before committing them to your
production site server for inventories.

The best way to do this is with a lab setup separate from your production network. It
doesn’t have to be anything fancy, just a basic, small network that mimics your
production network. This way, when you modify your MOF or run scripts to create or
collect hardware inventory information you are not exposing your production network
to any risks associated with your attempts to alter the natural order of things.

Remember that when you compile MOF edits you are modifying the WMI
repositories on your clients and creating tables, views, and stored procedures for those
modifications in the SMS database. This phase is called testing for a reason; don’t take
the risk of introducing bad data into your production environment! These mistakes
can all be cleaned up, but it’s much easier not to have to deal with the mess on your
production network.

120

START TO FINISH GUIDE TO MOF EDITING

I can’t get my boss to buy me a box of floppy disks so how am I going to get him
to buy me the hardware and software to run a separate lab so I can do testing?

I’'m a realist. I know that a lot of organizations out there won’t support paying for
servers and software so you can enjoy the benefits of having your own play lab.

So here’s what I suggest: get a hold of some relatively inexpensive software that allows
you to have your own virtual lab. I use Microsoft Virtual PC
(http://www.microsoft.com/windows/virtualpc/default. mspx) and it hasn’t done me
wrong yet.

Using this software, all you need is enough RAM in your workstation to run the
various operating systems and applications you'll need for your lab network. This
virtual network doesn’t even necessarily have to be accessible from your production
network or the Internet at all. But you should still use licensed software though.

So one way or another you’ve got your lab right? No? OK, you can’t get the assets you
need for a “real” lab, and you can’t even get the boss to buy Virtual PC for you, so
what do you do now?

Well, now you need to draw straws with your co-workers to decide who is going to
sacrifice their system to the MOF testing gods.

Maybe that isn’t such a good idea. The next best option is to have a dedicated testing
machine upon which to practice your inventory white magic. Choosing to run tests on
one’s own workstation has also been known to happen.

I didn’t believe in all this testing stuff at one time and used my workstation to test my
edits. A few WMI repository rebuilds later and I was praising Virtual PC.

Regardless of the method you choose, we’re going to call this guinea pig—virtual or
not-- the test system from now on. Remember, alvays, ahvays, ahvays test your inventory
modifications before reaching out and touching every SMS client you have.

You may create some glorious modification that performs supernatural inventory feats,
but you won’t know those feats come at the price of hardware inventory taking five
minutes to run on a workstation or creating a 2GB MIF file unless you test first. You
must test your modifications to ensure that you are accomplishing your goals at a price
you can afford.

Remember that class changes always have to be made in the primary site server’s
SMS_def.mof. If you’re not using a lab to test your modifications, you need to be
doubly sure you are confident in what you are doing.

The most common SMS inventory modification is to modify the SMS_def.mof itself.
Whether adding a reporting class for an existing class or utilizing one of the other

121

START TO FINISH GUIDE TO MOF EDITING

various methods I've discussed eatlier, sometime, sooner or later, you wi// modify your
SMS_def.mof. Why else are you reading this book?

There are basically six checkpoints to ensure that your SMS_def.mof modifications are
not going to land you at 10,000 feet looking for that left flap. I like to call these things
the six checkpoints to SMS_def.mof:

M Verify the MOF syntax with MOFCOMP.

M Compile the MOF on a test machine.

M Use WBEMTEST to check for the reporting class in the correct namespace.
M Initiate a hardware inventory.

M Verify the hardware inventory process.

M Verify the data on the SMS site server.

Verify the MOF Syntax With MOFCOMP

Please do this. I don’t know how many emails I've gotten and a simple MOFCOMP
check has shown the problem to be invalid syntax. Syntax is a killer. The way to use
MOFCOMP to verify your SMS_def.mof or static MOF syntax is to go to a command
prompt and type in MOFCOMP —check yourMOF.MOF.

I’'m going to use our old buddy from Chapter 7, the SMS_Installs RIP example, to
illustrate this for you.

Let’s pretend I've just created the SMSinstalls. MOF file in notepad. Now I want to
test it to ensure that it is free of syntax errors before adding this information to the
WMI repository of my test system.

My “mini-MOF” looks like so:

[/
// Start of SMS_Installs

//

#pragma namespace("\\\\.\\root\\CiMVv2")

[dynamic, provider("RegProv"),
ClassContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\SMS_Installs")

]

122

START TO FINISH GUIDE TO MOF EDITING

class SMS_Installs

{
[Key] string ApplicationName;
[PropertyContext("Description")] string Description;
[PropertyContext("InstalledDate")] string InstalledDate;
[PropertyContext("Version")] string Version;

2

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE), SMS_Group_Name("SMS_Installs"),
SMS_Class_ID("SMSExpert|SMS_Installs|1.0")]
class SMS_Installs : SMS_Class_Template
{
[SMS_Report(TRUE),Key] string ApplicationName;
[SMS_Report(TRUE)] string Description;
[SMS_Report(TRUE)] string InstalledDate;
[SMS_Report(TRUE)] string Version;
};
//
// End of SMS_Installs
//

The actual command I would use here is:
MOFcomp —check SMSinstalls. MOF

Whenever you modify the SMS_def.mof you should run this check as soon as you
think you have everything right. MOFCOMP is real good at exposing typos and
forgotten symbols like ; and].

If you do happen to forget something, MOFCOMP will thoughtfully remind you and
even give you a hint as to what you have done wrong, as in Figure 11.1:

Figure 11.1
s | CAWINDOWSvsystemn 32\cmd. exe

C=“TEMP>mofcomp —check smsinstalls.mof

Microsoft <R)> 32-bit MOF Compiler VUersion 5.1.2680.2180

Copyright <c?» Microsoft Corp. 1997-2881. All rights reserwved.

Parsing MOF file: smsinstalls.mof

cmsinstalls .mof <17>: error SYNIAX BH8OA44885: Expected closing bracket

Compiler returned error Bx8AB44005
C:~TEMP>_

123

START TO FINISH GUIDE TO MOF EDITING

Hmm, that looks important, and MOFCOMP doesn’t look happy for some reason.
See that number in the parenthesis on the fifth line? That is MOFCOMP’s subtle way
of saying, “Hey man, you messed up on line 17 and I’'m taking my ball and going home

now .

So let’s go check out line 17 because it appears there is a missing expected closing
bracket. Time to open up that peculiar MOF file and see what’s going on.

Here’s a neat trick. If you are running Windows 2000 or above—and I hope you are by
now—then all you have to do is hit <Ctrl-G> in Notepad (with word wrap turned
off). You should see something like Figure 11.2:

Figure 11.2

Goto line @@

Line Humber:

[ak.] [Cancel]

Just type in 17 (since that’s the line MOFCOMP told us was messed up) and you are
there. Checking out line 17 from the C:\ Temp\SMSinstalls. MOF we see this:

[PropertyContext("Version")] string Version;

Hmm, this line looks good to me. Maybe this MOFCOMP thing isn’t all it’s cracked
up to be. But wait a minute, let’s look at line 16:

[PropertyContext("InstalledDate")] string InstalledDate

Something looks different about this line, right? Maybe something like, oh I don’t
know, a closing bracket? Remember that MOFCOMP will continue to process the MOF
file untl it finds an error and then it will stop ... right then, right there. When it ran
through this MOF edit, it was happily processing until it got to line 17, where it noticed
that it should not continue on to the next line when there wasn’t a semi-colon at the
end of the preceding line.

In other words, MOFCOMP didn’t notice a problem until it got to line 17 when the
error was really on line 16. Did that make sense? You have to keep looking and
thinking “outside the MOF” to find something out of the ordinary when things go
wrong. This doesn’t always happen, but in case it does, don’t get wrapped around the
handle because line 17 looks perfectly fine to you!

124

START TO FINISH GUIDE TO MOF EDITING

So now we’ve exposed and corrected the syntax error on line 16 by adding the semi-
colon at the end of the line. It’s time to re-check the MOF with MOFCOMP:

Figure 11.3
AWINDOWSvsystem 32'emd. exe

C=“TEMP>mofcomp —check smsinstalls.mof

Microsoft (R> 32-hit MOF Compiler Uersion 5.1.2600.2188
Copyright <c?» Microsoft Corp. 1997-2801. All rights reserwved.
Parsing MOF file: smsinstalls.mof

MOF file has been successfully parsed

Suntax check complete.

In a perfect world the last line in compilation would always be Dore!like it is in Figure
11.3. This tells us that our MOF edit has successfully passed MOFCOMP’s syntax
check. When MOFCOMP is happy, everyone is happy. With the syntax check
successful, it’s time to check block number 1.

M Verify the MOF syntax with MOFCOMP

Compile the MOF on a Test Machine

Once you've verified the MOF syntax it’s a simple matter of running MOFCOMP
again to compile the MOF on the system you’ve chosen as your guinea pig—er, test
system. Compiling, as you may remember, is simply adding the contents of the MOF
file to the system’s local WMI repository so that you can inventory it later with SMS.

To do this you simply take the —check out of the command line that we used before.
Your command line should now be:

MOFCOMP SMSinstalls. MOF

Your command prompt window should now look something like Figure 11.4:

Figure 11.4
AWINDOWSAsystem 32%cmd. exe

C=“TEMP>mofcomp smsinstalls.mof

Microsoft <R> 32-bit MOF Compiler Uersion 5.1.2680.2180
Copyright €c) Microsoft Corp. 1997-2881. All rights reserved.
Parsing MOF file: smsinstalls.mof

MOF file has bheen successfully parsed

Btoring data in the repository...

Done?

C:~TEMP >

125

START TO FINISH GUIDE TO MOF EDITING

We must still be in a perfect wotrld. MOFCOMP says Dore! The data from the
SMSinstalls. MOF file should now be successfully stored in the test system’s WMI
repository—should be, we’ll verify it in a second.

4 Compile the MOF on a test machine.

Use WBEMTEST to Check for the Class

Now everything is good in the wortld, right? Yep, and I've got a nice mountain view
duplex to sell you in Florida too! When it comes to modifying your MOF you must
think like the X-files—trust no one.

Time to use our old friend from Chapter 3, WBEMTEST. Just hit start/run/type in
WBEMTEST and hit OK. Connect to the ro/\CIM1/2 namespace—that’s whete we
put the data class for the SMS Installs information.

Figure 11.5
Cancel
Caonhection:
Using: |IWbemLocat0r [Mamespaces) j
Retuming: | hwbemServices -
Credentials
Usger: |
Passwond: |
Autharity: |
Locale How ta interpret empty password
v NULL " Blank
Imperzonation level Authentication level
" |dentify " Mone + Packet
* |mpersonate " Connection © Packet integrity
" Delegate " Call " Packet privacy

Hit connect and let’s recursively search for the class we’ve created.

126

START TO FINISH GUIDE TO MOF EDITING

Figure 11.6

Superclass Info

Enter superclazs name
| Cancel

" Immediate anly

Once we’ve connected, let’s look for the SMS_ Installs class we created.

Figure 11.7

Object editor for 3M5_Installs

Qualifiers
ClazsContext CIM_STRING localHREY_LOCAL_MACHIMI
dynamic: Clt_BOOLEAM TRUE Save Object
provider CIM_STRIMG RegProv
< | 3> Shaow MOF
AddQualiier | EditQualier | Delete Quaifier |
Properties [Hide Spstem Properties ™ Local Only Berives]
__SERVER CIM_STRING BEMMNwI31000020 ~
SUPERCLASS CIM_STRING <rul>] Instances
Applicationt ame CIM_STRIMG <l
Dregcription CIM_STRIMG <l p
InstalledDate CMSTRING <rull> Refiesh Dbjsct
Wersion CIM_STRIMG <l 3
F3 | 3 Update type
Add Property Edit Property Delete Property ¢ Create anly
~
Methods Update only
(* Either
{* Compatible
" Safe
< > " Force
AddMethod | EditMethod | Delete Method |

Great! The class is there along with all the fields we wanted. But let’s see if it’s doing
anything besides sitting there and looking pretty. Time to get the instances from this
class by clicking on the, you guessed it, instances button!

127

START TO FINISH GUIDE TO MOF EDITING

Figure 11.8

Query Result
Instances of SMS5_Installs

4 objects | max. batch: 4 |Done

S5 _Inztallz ApplicationM ame="¢Application1"
SMS_Inztallz.ApplicationM ame="Application2"
S5 _Inztallz ApplicationM ame="4pplication3"
SMS_Inztallz.ApplicationM ame="Applicationd™

Add | Delete |

Hurray! Our MOF edit worked! There are four instances of SMS_Installs in my test
system’s WMI which correspond to the four entries in the registry of the test machine.
Now we are just waiting on a hardware inventory cycle to come grab them up and add
them to the database. Things are looking good so far.

Of course, this will never happen unless we add our SMS_Installs MOF addition to
our SMS_def.mof on the site server. Remember, we’ve compiled the MOF edit on our
test system, but SMS has no clue that we’re even interested in this class at this point.

Let’s go do that now—add the entire SMS_Installs. MOF to the bottom of the
SMS_def.mof stored on the site server. Remember, it’s going to take a few minutes
for the modified SMS_def.mof to get through the syntax check and file to policy
conversion process for Advanced Clients.

Whether you have Advanced Clients or Legacy Clients, make sure you wait a few
minutes (5-10) for the new SMS_def.mof information to get to the management point
or client access point respectively.

Moving on, you know what to do now:

M Use WBEMTEST to check for the reporting class in the correct namespace.

Initiate a Hardware Inventory

So we’ve created the MOF edit, checked its syntax, compiled it on our test system, and
verified that the class is in the correct namespace. Time now to initiate a hardware
inventory and see what this baby really does! I'll run through the steps quickly for both
the Advanced Client and Legacy Clients here.

128

START TO FINISH GUIDE TO MOF EDITING

Advanced Clients:

From your test system, open the Systems Management applet in control panel, click on
the actions tab and select Machine Policy Retrieval & Evaluation Cycle.

Wait a minute; this section is called Initiate a hardware inventory and you re
telling me to select Machine Policy Retrieval <l Evaluation Cycle?

OK, hold on, someone was sleeping through Chapter 1. SMS Advanced Client

hardware inventory is controlled by a hardware inventory policy based on the contents of
the SMS_def.mof not the SMS_ def.mof itself.

After initiating a machine policy retrieval and evaluation cycle, wait a few moments and
then highlight the hardware inventory cycle and click the Initiate Action button.

Legacy Clients:

To force a hardware inventory on a Legacy Client, open the Control Panel; double-
click on System Management; click on the third tab; click on the hardware inventory
agent; click on the Start Component button.

M Initiate a Hardware Inventory.

Verify the Hardware Inventory Process

So you’ve hit the appropriate buttons to initiate the hardware inventory, but how do
you know if it’s really doing anything? Logs. Logs are your friends. They’re not much
fun at parties, but they sure are useful at work!

If you are using SMS Trace to view the inventory logs you can see the inventory
actions as they are occurring in real time. I’m a big fan of SMS Trace, but you can use
notepad or any log viewer that you so desire.

The latest download location for SMS Trace is the download page for the Systems
Management Server 2003 Toolkit 2 and can be found at:
http://www.microsoft.com/SMServer/downloads/2003/tools/toolkit.mspx

Advanced Client:

To follow along with all the hardware inventory fun for the Advanced Client you need
to open up the InventoryAgent.log file. This file is located at:

%WINDIRY\systens32\ CCM\Logs\ InventoryAgent.log

129

START TO FINISH GUIDE TO MOF EDITING

With SMS Trace you can watch the inventory progress. If things go bad for your new
class, SMS Trace very thoughtfully highlights the error in red. If things go well, you’ll
have to use the search function to search for your class name to ensure it was picked
up. Regardless of the tool you use to search for it, you’re looking for a line that says

something like this:

Collection: Namespace = \\.\root\CIMV2; Query = SELECT __ CLASS, _ PATH,
__RELPATH, ApplicationName, Description, InstalledDate, Version FROM SMS _ Installs;
Timeout = 600 secs.

That tells you that the class has made it to the big time and is being inventoried
successfully.

Legacy Clients:

The Legacy Client log file for your particular attention in hardware inventory actions is
the hinv.log file. This file is located at:

%WINDIRY\ms\SMS\ logs\ hinv.log

The process is basically the same here as it was with the Advanced Client. Just look for
a line that shows the new class being processed.

Should there be any issues with either the Advanced Client or Legacy Client processing
the new class, these log files will more than likely contain the first clues to correcting
the problem. This isn’t the troubleshooting chapter, so for now, we’ll just stay in our
perfect world and move along.

M Verify the hardware inventory process.

Verify the Data on the SMS Site Server

Verifying the data on the SMS site server is pretty easy. Just open resource explorer for
your test client and look for the class’s group name under the hardware section. You
should see something like Figure 11.9:

130

START TO FINISH GUIDE TO MOF EDITING

Figure 11.9
:m Resource Explorer M=
Ele Action Wiew Help

o | BESGRE| 2

. SM5 Advanced CIIE_I .ﬂppllcatlon /| Description | Installedhate | \ersion
B}, 55 advanced Clie | @) nplicationt Test Data 1.0 09/07/2005 8:4... 1.0

B Sws mnstals | @] appicationz Test Data 2.0 09/10/2005 10:... 2.0
1l Software Lpda

tes | ®applications Test Data 3.0 09/012/20051... 3.0
----- Lol seomd T al o
, B rplicationd Test Data 4.0 09{12/2005 12:... 4.0

This is the point where you will get all giddy, jump up and down in excitement and
attempt to explain your feat to your family and co-workers. They will all give you the
“what look”. Do not be discouraged; this happens to us all, and there are always
people like me around who will say how cool you are and stuff.

M Verify the data on the SMS site server.

And so we come to the end of another exciting chapter. Just remember, there is a lot
of waiting involved in making SMS_def.mof modifications. Don’t try to rush things!
Go get a cup of coffee or talk about last night’s football game with your co-workers
and let SMS do the driving for a while between steps.

131

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

You should be checking and testing all of your changes before committing them
to your site server for production inventories.

The best way to do this is with a lab setup separate from your production network. It
doesn’t have to be anything fancy, just a basic, small network that mimics your
production network. If you can't get a physical lab, consider creating a virtual
one by using Microsoft Virtual PC :
http://www.microsoft.com/windows/virtualpc/default. mspx or by dedicating a
specific test computer or computers to test your inventory extensions.

The way to use MOFCOMP to verify your MOF syntax is to go to a command
prompt and type in MOFCOMP —check yourMOF.MOF. Take the —check out
of the command line to commit your changes to the WMI repository. Your
command line would then be: MOFCOMP yourMOF.MOF

SMS Trace allows you to view the inventory logs and can see the inventory actions as
they are occurring in real time. The latest download location for SMS Trace is the
download page for the Systems Management Server 2003 Toolkit 2 and can be found
at: http://www.microsoft.com/SMSetver/downloads /2003 /tools/ toolkit.mspx

The Advanced Client inventory log is named InventoryAgent.log and is located at:
%WINDIRY\systenn32\ CCM\ Logs\Inventory.Agent.log

The Legacy Clients inventory log is named hinv.log and is located at:
%WINDIRY\ns\SMS\ logs\ hinv.log

M Verify the MOF syntax with MOFCOMP.

M Compile the MOF on a test machine.

M Use WBEMTEST to check for the reporting class in the correct namespace.
M Initiate a hardware inventory.

M Verity the hardware inventory process.

4 Verify the data on the SMS site server.

132

START TO FINISH GUIDE TO MOF EDITING

Chapter 12: Pulling the Trigger
"TYs eind gffim 1o co the impprssible.” — Wakt Direy

ith a MOF edit successfully tested, the only thing left to do is to move the
modification to the production network. We’ve already covered this a
little, but there are some important things to know when it comes to

distributing the SMS_def.mof and getting the WMI repositoties of your
clients updated correctly—especially in the case of Advanced Clients

Back Up the Original SMS_def.mof

Whenever you want to make a change to the SMS_def.mof, a good practice to get into
is to back-up the old SMS_def.mof just in case things don’t go your way. SMS 2003
SP1 does this automatically for you, but it’s still a good habit to get into. This is where
that funny SMS_def.mof.bak file comes from in the SMS\data\ hinvarchive folder.

Replace the Original SMS_def.mof on the

Site Server

Once you've backed up the old SMS_def.mof;, save the new, tested SMS_def.mof to
the SMS\inboxces\ clifiles.sre\hinv folder on the primary site setver to get the new MOF
distributed to the first primary site.

Update the Site Hierarchy

Once you've finished distributing the SMS_def.mof to the first site, you'll need to copy
the new SMS_def.mof file to a// your primary site servers. Each site maintains its own
version of the SMS_def.mof. If you update the SMS_def.mof on one site in your
hierarchy you need to remember to distribute it to all the other sites as well if you
expect to retrieve the new information from their clients.

What if I don’t want to collect this information from my child sites? Do I still
need to get the new SMS_def.mof on my lower level site servers?

Yes. If you have created collections at the parent site utilizing information from your
new MOF extensions as criteria, when these collections are propagated throughout

133

START TO FINISH GUIDE TO MOF EDITING

your site any site server without knowledge of the modified SMS_def.mof will not be
able to create those collections. It will cause a ton of status messages saying so. Even if
you really don’t want to use the inventory extensions you’ve created at lower sites, it’s
still a good idea to get that modified SMS_def.mof distributed correctly.

SMS_def.mof Updates: Behind the

Scenes

Once you've updated the SMS_def.mof on the site server, SMS will automatically
compile it and distribute it via its magical powers to the management point as a new
inventory policy for Advanced Clients and to the client access points for download by
Legacy Clients.

I suppose I owe you a little better explanation than “magical powers”. OK, here goes.

When you place a new SMS_def.mof on the site server, many things go into action
behind the scenes. I’'m going to go through a quick explanation of it here; this is all
you need to know if things go right. For a deeper explanation for when things go
wrong, check out the troubleshooting chapter.

Legacy Clients:

The master copy is saved on the site server in the SMS\znboxes\ clifiles.src\ hinv foldet.
This SMS_def.mof is, in turn, copied to the CAP by inbox manager. Legacy Clients
download the new file at their next client refresh cycle—every 23 hours. When the
next scheduled inventory is run, the clients will compare this new MOF to their
existing local copy of the MOF, decide the one from the server is newer, and compile
it. Once it has been compiled, the client will kick off a fu// hardware inventory. Once
the inventory is complete, the client will send its inventory results in .MIF format back
to the CAP, which then forwards it on to the primary site server and the SMS database.

Do not copy the new SMS_def.mof directly to a Legacy Client or CAP. These files will
be overwritten by the SMS Site Servet’s copy.

Advanced Clients:

The new SMS_def.mof is saved on the site server in the SMS\inboxces\clifiles.sre\ hinv
folder. This file is compiled by data loader to get the new information into the SMS
database. The new MOF file is then copied to the CAP for Legacy Client support.

Policy provider creates the inventory policies for Advanced Clients and sends them to
the management point for download by the clients at their next machine policy refresh
interval. This interval is set to once an hour by default. The Advanced Client

134

START TO FINISH GUIDE TO MOF EDITING

downloads and evaluates the policy, which gets all the new goodies from the modified
MOF into the WMI repository and executes a normal hardware inventory cycle.

Unlike the Legacy Client, the Advanced Client only performs a de/fa hardware
inventory at this point. The inventory information is sent back to the management
point in . XML format. From there it finds its way back to the primary site server and
the SMS database.

There is a built-in two-minute interval between the time the Advanced Client downloads
and evaluates a new hardware inventory policy.

I kind of skipped over an important point here that I think I'll just go ahead and get
out of the way now.

When you copy the new SMS_def.mof to the site server, the server itself compiles the
MOF with MOFCOMP to ensure that the file is syntactically correct. If all the data
within the file is correct, then things progress as described above. If not, the file is
moved to the SMS\data\ hinvarchive folder.

Yes, this is where I said SMS 2003 SP1 automatically backs up your SMS_def.mof file.
It’s also where SMS will place your SMS_def.mof if it contains syntax errors. The only
difference is that, instead of naming your file SMS_def.mof.bak, it will call it
SMS_def.mof.bad.bak.

SMS def.mof Back Ups: Good and Bad

SMS will keep up to six copies of your old SMS_def.mof files—good and bad—in the
SMS\data\ hinvarchive folder. The first good backup gets named SMS_def.mof.bak, and
then the successive backups are named SMS_def.mof .bk0 through SMS_def.mof
.bk4.

Bad SMS_def.mof files receive basically the same treatment. These files are named
SMS_def.mof.bad.bak, and SMS_def.mof .bad.bk0 through SMS_def.mof .bad.bk4.
For the next SMS_def.mof backups (good and bad) the process just starts again from
the beginning overwriting the oldest record first.

The above scenario works fine if you are only making changes to existing classes or
providers. Otherwise you’re going to have to compile the MOF containing any new
data classes/providers on your Advanced Clients. Advanced Clients requite the local
compilation for both new classes and providers, as opposed to Legacy Clients, which
only require this when a new provider needs to be registered.

There are a couple of options here. You can update the SMS_def.mof on the site
server and locally compile that copy on the clients. Only caveat here is that SMS will
attempt to inventory data classes that aren’t in existence on clients that haven’t

135

START TO FINISH GUIDE TO MOF EDITING

compiled the new SMS_def.mof yet. Technically, this option won’t hurt anything—if
SMS says to inventory a non-existent class on your clients, you will just get errors in
your hinv.log or InventoryAgent.log respectively saying that the class doesn’t exist.

Using a Mini-MOF

Another option is to create the “mini-MOFI” containing only the new data class
and/or provider information and compile it locally on the clients before adding the
reporting class to the SMS_def.mof on the site server. Either way, your clients will
have to compile a MOF file to get the data you are after into the database. That MOF
file will have to be available for new clients that join your site so that it can be compiled
by them as well.

How do you accomplish this? SMS’s built-in software distribution, of course. Just
create a package with a program consisting of your custom MOF edits in one big
“min-MOF”, and a command line of MOFCOMP <yourMOFedits>.MOF. Remember,
if you want to use the MOFCOMP —autorecover option, then the file will need to be
copied locally to the client in a safe and stable location before compilation occurs.
Advertise this program on a recurring schedule according to your personal situation to
pick up new clients and update older ones who may have missed your latest and
greatest modification.

This technique also works for advertising scripts that populate the client WMI
repositories for inventory.

If you’re interested in doing this and don’t think that’s enough information do not fret
my friend. I’ll talk a lot more about this technique in Chapter 14, Troubleshooting and
Tips.

136

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

Always back up your SMS_def.mof before making changes. SMS 2003 SP1 does
this automatically for you by renaming your old SMS_def.mof to SMS_def.mof.bak
and storing it in the SMS\data\hinvarchive folder.

Each SMS Site maintains its own version of the SMS_def.mof. You should copy
a modified SMS_def.mof to each primary site within your hierarchy to maintain
standard inventory processes and avoid odd collection membership issues later on.

Legacy Clients download the modified SMS_def.mof file from their CAP during their
client refresh cycle (every 23 hours by default) and perform a full hardware inventory.

Advanced Clients receive a new inventory policy from their Management Point during
their next policy refresh interval (once an hour by default) and perform a delta
hardware inventory.

There is a built-in two-minute interval between the time the Advanced Client
downloads and evaluates a new hardware inventory policy

Advanced Clients require the local compilation for both new classes and providers as
opposed to Legacy Clients, which only require this when a new provider needs to be
registered.

137

START TO FINISH GUIDE TO MOF EDITING

Chapter 13: Cleaning up

The greatest raistake you can rmafke in lje 7s fo be continnonsh) fearing you will afke one.
~Elbert Hubbard

I pile up “stuff”. I used to call this my inbox, but “stuff”” seems to fit this

particular location better now. This stuff is all useful material that I've

printed out from every corner of the Internet and beyond. Some day I'm
sure I'll need to reference it for one reason or another.

H 1, my name is Jeff, and I have a bad habit. I have a corner of my desk where

My problem is, every now and then I'll need to do something, and, realizing that the
information I need is in the pile, start the laborious process of sorting through it to find
the bits and pieces I need. Sure, by my third cup of coffee I've usually found what I'm
looking for—or worse, found three copies of it! This shames me into doing
something my wife wishes I would do more often—clean up!

The same thing can happen to your SMS site if you’re not careful. No matter how
dedicated you are to your SMS site, things happen. Data classes become unneeded on
your clients. Tables, views and stored procedures left behind in the SQL database by
some long forgotten SMS admin are discovered. You play with the flip-flop MIF
example from Chapter 10 and forgot to clean up the database. You get the picture,
right?

There are a couple of steps to cleaning up undesired data from your SMS site.
Remember, you don’t just need to clean up your database; your clients are in need of a
good scrubbing as well.

M Clean up the SMS_def.mof on the site server.

M Remove the unnecessary WMI classes from your setver and clients.

M Remove the class data from the database.

138

START TO FINISH GUIDE TO MOF EDITING

Clean up the SMS_def.mof on the Site

Server

The first thing that needs to be done is to clean up the master SMS_def.mof for the
site. 'This makes sense, right? I mean, it’s kind of pointless to start with cleaning up
the database tables when the next time a client runs hardware inventory those tables
will just be recreated. Don’t forget to get the newly modified SMS_def.mof copied to
all the sites in your hierarchy that use that old version.

So, open up your SMS_def.mof from the SMS\snboxes\ clifiles.sre\ hinv folder. If you just
want to stop collecting class data then just turn the class reporting qualifier from
TRUE to FALSE and SMS will not inventory the class anymore.

You could also get crazy and just delete the offending class completely from your
SMS_def.mof. I say get crazy, because as well all know, as soon as you delete the class
you’re going to be told by management that now they would like to see that “widget
serial number data” you said you had started inventorying six months ago! Now you’re
going to have to go to your own version of “the pile” and remember what that class
looked like and go through the entire process again.

A better option is just to comment out the class like we talked about in Chapter 3. Just
puta /* at the top of the section and a */ after the end of it in case you ever need it
again.

Now clients conducting hardware inventories during your cleanup proceedings won’t
sabotage your work by submitting unneeded inventory data to your database.
However, this still leaves that WMI and reporting class data on all your client
machines. ..that’s not cool.

Something else to think about here. If you’re collecting inventory data for the class you’re
planning on deleting using MIF files instead of the SMS_def.mof, ensure that you delete
those files from the appropriate client directory and/or delete the advertisement causing a
script to run that creates them.

Remove the Unnecessary WMI Classes
From Your Clients

Here’s where my consolidated “mini-MOF” idea for MOF customizations comes into
its own. Remember, I use this “mini-MOF” to regularly maintain the custom WMI
data and reporting classes on my Advanced Clients by scheduling it to be compiled via
SMS software distribution on a regular basis.

139

L
N’%

Don’t forget to clean this
class out of your site
server’s WMI repository
as well. If you don’t, you
may still find these
“ghost” classes as
attributes for building

queries!

START TO FINISH GUIDE TO MOF EDITING

To delete the unneeded classes from the local system WMI you’re going to have to
compile a modified MOF containing the now famous #pragma deleteclass line. Just open
up your “mini-MOF” and comment out the entire section for your targeted class—or
delete the class totally and roll the dice that you'll never need it again. Make sure you
use the #pragma deleteclass command on both the data and reporting classes.

Place these four magic lines, either just above the commented section or where the old
class information used to be if you deleted it. I'm using the custom TimeZonelnfo
class for this example:

#pragma namespace("\\\\-\\\root\\CIMV2")

#pragma deleteclass("TimeZonelnfo",NOFAIL)

#pragma namespace("\\\\\\\ROOT\\CIMV2\\SMS")

#pragma deleteclass("TimeZonelnfo",NOFAIL)

/s":

...TimeZonelnfo class information that | used to like, but now | don’t...

o

Do not delete a data class unless you created it SMS and WMI work in mysterious ways
sometimes, and deleting a class may result in your having to rebuild the entire WMI
repository to get the system to function correctly again.

Now, just update the distribution points for your scheduled MOF compilation
program, and sit back and enjoy the show as the classes are magically deleted from
your clients’ WMI repositories.

If you are running Legacy Clients, just make these changes on the master
SMS_def.mof on the site server and those clients will delete the classes during their
normal inventory, since they’ll be compiling the full SMS_def.mof when it changes

anyway.

This is the ticket if you have deployed the modifications site-wide. If you only want to
delete the class from a test system, just open WBEMTEST, search for your unwanted
class and hit delete (take it out of the oA\ CIM172 and roof\CIM1 2\SMS namespaces).

Now that the SMS_def.mof has been cleaned up and the client’s WMI repositories
have been cleansed, it’s time to go after that useless data cluttering up the database.

140

START TO FINISH GUIDE TO MOF EDITING

Remove the Class Data From the

Database

I’'m going to show you the “hard” way to do this first, and then the “easy” way. The
hard way in this case is manually deleting the tables yourself using the Microsoft SMS
2003 Toolkit 2 tool DELGRP.EXE. This tool can be found at:

(http:/ /www.microsoft.com/SMSetver/downloads /2003 / tools/ toolkit.mspx)

DELGRP

DO NOT just go into the SQL database and manually delete the TimeZonelnfo data
and history tables! Doing so will make SQL very angty with you and basically ruin
your whole day.

Remember that when you modify the SMS_def.mof and client configurations to report
on new data, many different items are created in your SMS database. These items
include (I'll give examples for the Flip Flop Information class that I'm about to delete):

e Data and history tables
O Flip_Flop_Information_Data
0 FHlip_Flop_Information_History
e Views for both tables
0 v_GS_ Flip_Flop_Information
0 v_HS_Flip_Flop_Information
e Stored procedures for both tables
0 d FHlip_Flop_Information _DATA
0 p Hip_Flop_Information _DATA

We need to whack all of those back to where they came from—our imagination in this
case. So we need to get to work with DELGRP.

To use DELGRP, simply copy the file to your site server and open up a command
window focused on the directory where you copied DELGRP. Follow the procedure
below for each data class that you want to delete (I'll give you the syntax in a minute):

1. Stop the SMS Executive Service

141

START TO FINISH GUIDE TO MOF EDITING

2. Delete the class by referencing the exact class name ‘i.e.’
“Microsoft | Class Name | 1.0” (don’t forget the quotes!)

3. Restart the SMS Executive Service

An easy way to expedite this process is to write a quickie .BAT file to do the work for
you. If you run DEI.GRP /? from the command line, you will be rewarded with the
syntax, and even a basic script example to do your dirty work:

SMS Delete Inventory Class Utility

Usage:
DelGtp /L
DelGtp "<Inventory Class Name>" [/C | /H]

Options:
/L - List all inventoty classes available for temoval.
Displays the number of rows in the data table for each one.
/C - Display collections that reference this class.
/H - Remove histoty data and make the class a no-histoty class.
This will prevent history from being maintained for the class.

If the class name is specified with no options then
the inventory class and all associated data are removed.

To remove unused inventory classes from the SMS database:
- Stop the SMS_EXECUTIVE setvice.
- Use the /L option to identify classes with no data.
- Use the /C option to make sure no collections will be affected.

- Remove the class.
- Start the SMS_EXECUTIVE service.

Example:
NET STOP SMS_EXECUTIVE
DelGrp /L
DelGrp "COMPANY | CUSTOM_CLASS [1.0" /C
DelGrp "COMPANY | CUSTOM_CLASS|1.0"
NET START SMS_EXECUTIVE

NOTE: Default classes created by SMS setup cannot be removed or altered.
You must have db_owner permissions for the SMS database to remove classes.

See the script part in bold? Just cut and paste the part after Example: into notepad,
change the name of the class to delete to your custom class, and save it with a .BAT
extension. Running it on the site server (you have to have the script in the same
directory as DELGRP for it to work) and it will clean out those tables for you.

One thing extra I do when I use this method is to add another line with just the word
pause. 1f you are not familiar with batch files, the word pause will cause the script to

142

START TO FINISH GUIDE TO MOF EDITING

halt at completion and display the “Press any key to continue” option. I like this
because it stops the script long enough for me to tell if it worked!

Now that the data and history tables for the class are gone, you just need to search
through your SQL Enterprise Manager views and stored procedures to delete those
that reference the class name you just deleted using DELGRP.

There will be two views to delete. One will start with v_GS and the other with v_HS.
Both will be followed by your class name.

There will be two stored procedures for your class as well. One starts with a “d” and
the other a “p”. Delete at will, and be done with this class deletion.

How about an example for those of you that were playing with the flip flop
NOIDMIF example? C’mon you know you were playing with it!

If you dropped the flipflop.mif in your NOIDMIF folder prior to running a hardware
inventory, you will have the information below in your database:

Tables for flip flop information:

Figure 13.1
Tﬂl Console RootMicrosoft SQL Servers'S0L Server Group'{local) {... [H[=]

----- Mame # Owner | Twpe =
] stored Procedure

= @ Flip_Flop_Information_DATS dbo I=er
: 5 - Flip_Flop_Information_HIST dbo Il=er -
1 | r | r
| I 4

<]

Views for flip flop information:

v_GS_Flip_Flop_Information0 and v_HS_Flip_Flop_Information0
Stored procedures for flip flop information:
dFlip_Flop_Information DATA and pFlip_Flop_Information DATA

I’d show you pictures here, but that would be just a little bit of overkill—not to
mention taking up two pages for the pictures!

Now, let’s get rid of that flip flop information and keep your boss from knowing
you've been playing with the database! Using DELGRP, your batch file to delete the
table information would look like this:

143

Be careful when using
DelGrp.exe that you
don’t include any extra
spaces in your class
name—and don’t forget
those quotation marks

around it either!

START TO FINISH GUIDE TO MOF EDITING

NET STOP SMS_EXECUTIVE

DelGtp /L

DelGrp "SMSEXPERT | Flip Flop Information|1.0" /C
DelGrp "SMSEXPERT | Flip Flop Information|1.0"
NET START SMS_EXECUTIVE

PAUSE

You don’t have to use the De/Grp /L line in thete if you know exactly which class
you’re going after, and since it’s really not necessary to this example I've taken that part
out of my script. Saving the script with a BAT extension on the site server in the same
folder as DELGRP and running it would give you results shown in Figure 13.2:

Figure 13.2

WINDOWS' system32' cmd.exe

STOPF SME_EXRECUTIVE
The SMS_EXECUTIUE service is opping. .
The SMS_EXECUTIUE service was stopped successfully.

C:~>DelGrp "SMSEXPERT !FLIP FLOF INFORMATION:1.B" ~C

HOTE: Mo collectionz reference this class and it can he safely removed.

G:s>DelGrp "SMSEXSPERT iFLIP FLOP INFORMATION:i1.8"

Buccessfully deleted the class SMSEXPERT IFLIF FLOP INFORMATION!1.6.
Rezstart the SME_EXECUTIVE service to avoid errors.

C:+~>MET START SMS_EXECUTIUE
The SMS_EXECUTIUE service iz starting.
The SMS_EXECUTIUE service was started successfully.

to continue . .

So there! Flip flop information tables are no more. Now you just need to scroll down
and find those related views and stored procedures and delete them. When you right
click on the View names, you just click De/eze from the context menu. You will be
presented with something similar to Figure 13.3 for the v_GS_Flip_Flop_Information

view. Just click on Drp A/ to finish deleting the view. Do the same for the
v_HS_Flip_Flop_Information view:

144

START TO FINISH GUIDE TO MOF EDITING

Figure 13.3

Drop Dbjects E3

The following objects will be dropped:

The following objects will be dropped:

Drop Al I
Lancel |
Help |

Show Dependencies...

Object Owrer Type

Drop All I

v_HS_Flip_Flop_Information dbo

Help |

Show Dependencies...

Now for those pesky stored procedures. Scroll down until you get to the
dFlip_Flop_Information_Data stored procedure, right click on it, select Deleze and
you’ll get the resulting Drop Objects dialog. Just like the views, click on Drop A/
Then scroll down until you see the pFlip_Flop_Information_Data stored procedure.
Right click, select delete, and hit Drop All on the Drop Objects dialog:

Figure 13.4

Drop Objects

Drop Dbjects [=]

The follawing obiects wil be dropped:

Object Owner | Type

dFlip_Flop_Information_DATA dbo

Dirop All I

Help |

Show Dependencies... |

The fallawing objects will be dropped:

Obiject Owner | Type

Drop &l I

pFlip_Flop_Information_DATA dbo

Shaow Dependencies... |

There! Flip Flop info is gone forever, right?! Yeah, as soon as you do that on every
primary site server in your bierarchy that had the data in it.

Oh, by the way, don’t forget to use WBEMTEST to delete those unneeded WMI
classes from your site server(s) when you delete data classes that store their information
in WMI when you’re finished here. I'm not going to go into using WBEMTEST again.

I think we’ve covered that in enough detail.

Time to move on to the easy way to do this. Remember this data class is created from
a NOIDMIF file—one that I haven’t deleted from my test machine’s noidmifs folder
yet. Run another hardware inventory on that system and ... guess what?! That class is

back! Time to get rid of it...again.

145

START TO FINISH GUIDE TO MOF EDITING

I did this on purpose—Iet this be a reminder to you that when you do it for real, you
need to get rid of those .MIF files for classes you're trying to delete!

SMS Expert’s Site Sweeper Utility

Site Sweeper is extremely easy to use, but don’t let the ease of use fool you. This utility
is extremely powerful and a great time saver. It can be found at:
http://www.SMSexpert.com/products/sitesweeper.asp

If you have multiple primary site servers, this tool is going to save you hours, if not
days, of trying to clean up your databases. Site Sweeper “sweeps” your site(s) clean of
classes you no longer want haunting the cyber halls of your site database. It takes out
all the tables, views, and stored procedures from the database, as well as cleaning up
the local WMI of the site server it is run against. Itis extremely fast and efficient and
since I've discovered it, I swear by it.

Once you open Site Sweeper, all you need to do is enter a primary site server name into
the top left text box and hit the Ioad Classes button. Doing so will cause a list of classes
to populate the area below the server name. I'm using <SMS Server> here for the
example. Just type in your actual server name here to use the utility.

If you want to run the utility on multiple servers, click on the Multiple Servers radio
button, and enter their names in the Servers fo Clean area below the class names. Hitting
the >> button adds them into the list of servers to clean.

If you are running this on the central site server for your entire hierarchy and want to
clean up your entire setup, just hit the box to add all servers under the specified site to
the server list. Don’t worty, Site Sweeper will get the site code for you tool!

Yes, you can delete multiple classes from multiple sites and servers with one click here!
Just leave the LIVE Run box unchecked while testing!

When you are ready to roll with the actual deletions, just check the I.IT”E Run box and
hit proceed. Ensure that you check the Bounce SMS_EXECUTIVE box to stop that
service before the deletions occur, and restatt it afterwards.

I’'m only going to delete one class from one server in this example. The
SMSEXPERT | FLIP FI.OP INFO | 1.0 class is going to be deleted from my site server
named <SMS Server>. OK that’s not really the name of my server in case you were
wondering. I just wanted to show you where your server name actually goes!

Anyway, I check the Bounce SMS_EXEUTIVE and LIVVE Run boxes and hit proceed.
This is what the interface looks like Figure 13.5 at this point:

146

START TO FINISH GUIDE TO MOF EDITING

Figure 13.5
5 site Sweeper - Licensed to IBM E|
Claszes to Remove Alfter a server is cleaned, the
Server Mame Single Clasz ID sms_executive service must be
stopped and started to avoid
Load classes from: | |<SMS Server: dataloader warnings. ‘would you
Example: MICROSOFT|Baseboardl.0 like this to be done automatically?
MICROSOFTMANIZ_PHNPENTITIES.O ~

v B SM5_EXECUTIVE
MICROSOFTRORKSTATION_STATUSH.O OUTICES _|

MICROSOFTREE_PC_MEMORY|T.0
MNETWORKIPCONFIG

Until you check the box below, the
application will perform a test run,

SMSEXPERTIFLIP FLOP INFORMATIONIMIF " Single Class Remaval bt ot affect to your site.
SMSEXPERTHD SERIAL NUMBER TEST.0 T T —
SMSEXPERTILOCAL_SER_ACCOUMTSI.0 ~ e ¥ LIVE Run
SMSEXPERTISMS_INSTALLSI.0
SMSEXPERTISMALOCALADMINGIT.0 v

Proceed

Servers to Clean
19:59:07 == Retrieving Site Code for =5M5 Server=.

[<5M5 Server 19:59:07 => Site Code BEN found for <SMS Server-|
+ Single Server

" Multiple Servers 19:59:08 == Class Query iz complete.

-

19:59:08 == Connection Estahlished. Loading classes...

Copyright® S5 Expert 2005, Al Rights Reserved. S5 Expert Capy Status | Clear Status | Cloze |

The bottom right is where Site Sweeper tells you what is going on. Next is the excerpt
from when the SMSEXPERT | FLIP FI.OP INFORMATION | 1.0 class was deleted
from my site with Site Sweeper.

20:04:03 >> Retrieving Site Code for <SMS SERVER>.

20:04:03 >> Site Code <XXX>found for <SMS SERVER>.

20:04:03 >> Connection Established. Loading classes...

20:04:03 >> Class Query is complete.

20:04:28 >> Starting TEST run.

20:04:28 >> Retrieving Site Code for <SMS SERVER>.

20:04:28 >> Site Code <XXX> has been retrieved for <SMS SERVER>.

20:04:28 >> Class Removal TEST

Class: SMSEXPERT | FLIP FLOP INFO | 1.0

Key: 116

Site: <SMS SERVER> -<XXX>

20:04:28 >> TEST run has successfully completed.

20:05:08 >> Starting LIVE run.

20:05:08 >> Retrieving Site Code for <SMS SERVER>.

20:05:08 >> Site Code <XXX> has been retrieved for <SMS SERVER>.

20:05:08 >> Class Key retrieved for: SMSEXPERT | FLIP FLOP INFO | 1.0 - 116.

20:05:08 >> Eliminating classes from WMI on <SMS SERVER>. Please wait...

20:05:08 >> Flip Flop Information has been removed.

20:05:09 >> Stopping SMS_Executive service on <SMS SERVER>.

20:05:51 >> SMS_Executive has stopped on <SMS SERVER>. Restarting
SMS_Executive.

20:05:51 >> Starting SMS_Executive service on <SMS SERVER>.

20:05:51 >> SMS_Executive has started on <SMS SERVER>.

20:05:51 >> Class removal has been successfull!

147

START TO FINISH GUIDE TO MOF EDITING

20:05:51 >> Retrieving Site Code for <SMS SERVER>.
20:05:51 >> Site Code <XXX> found for <SMS SERVER>.
20:05:51 >> Connection Established. Loading classes...
20:05:51 >> Class Query is complete.

There are a couple of important things to notice here in this short log. Look at all that
Site Sweeper does for you:

1.

2.

6.

Retrieves the site code for your site

Loads the classes from the site available to be deleted
Does a test run and displays what it is after

Deletes the class information

Deletes the class information from the site

Re-queries the WMI classes and displays the new list

Now that #4 line is a little under-described. Not only does Site Sweeper delete the
class table information, it deletes EI"ERYTHING associated with it from your site—
the tables, views, stored procedures, and even the WMI information about it from the
site server itself.

Now you can see why I call this the easy way.

You may have noticed the class name change from “SMSEXPERT | FLIP FLOP
INFORMATION |1.0” to “SMSEXPERT | FLIP FLOP INFORMATION | MIF” in the
Site Sweeper screen shot. Do not adjust your set. I did this on purpose as dramatic
foreshadowing for one of my tips in the next chapter.

148

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

To clean up your SMS Site database follow the steps here:

1. Clean up the SMS_def.mof on the site server

2. Remove the unnecessary WMI classes from your server and clients
3. Remove the class data from the database.

If you just want to stop collecting class data then just turn the class reporting qualifier
from TRUE to FALSE and SMS will not inventory the class anymore.

Deleting a data class completely from your SMS_def.mof is not recommended.
A better option is just to comment out the class like we talked about in Chapter 3. Just
put a /* at the top of the section and a */ after the end of it in case you ever need it
again.

If you’re collecting inventory data for the class you’re planning on deleting by using
MIF files or scripts files instead of the SMS_def.mof, ensure that you delete those
files from the appropriate client directory and/or delete the advertisement
causing a script to run that creates them!

Do not go straight into SQL and delete database tables manually!
Tools for cleaning up your database include:

SMS 2003 Toolkit 2 tool DELGRP.EXE. This tool can be found at:
http://www.microsoft.com/SMSetver/downloads /2003 /tools/toolkit.mspx

And ...

SMS Expert’s Site Sweeper utility (recommended):
http://www.SMSexpert.com/products/sitesweeper.asp

149

START TO FINISH GUIDE TO MOF EDITING

Chapter 14: Troubleshooting and Tips

Being defecated is offen a tesmgporary condition. Giving p is what nakes it permanent.
~Martene vos Savant

as with most things, sooner or later, something is going to break. Luckily the
kind folks at Microsoft have created log files to track just about everything
that SMS does. Finding the actual files involved in hardware inventory and
the paths that the hardware inventory information travels on its journey to
the database can be quite hard...OK ... impossible to find on Microsoft’s website.

Log Tag

To make your troubleshooting easier I've created the following diagrams to explain this
process in as much detail as I could squeeze onto these pages. I've tried to make the
diagrams short and sweet, but with enough information so that you can follow along
with your own version of each system and log file with confidence.

Due to space constraints I've given you the shorthand version of some log entries, but
left in enough for you to identify the lines ’'m demonstrating as you follow along with
your own log files.

Remember though, these files are from my lab SMS Site and there’s no guarantee that
your logs will match exactly. This particular site is running SMS 2003 RTM with verbose
logging turned on.

I’'ve broken down the hardware inventory diagrams into three distinct sections:
1. SMS_def.mof modification to new inventory policy in database
2. Machine Policy Retrieval & Evaluation Cycle

3. Client hardware inventory Data Path to Database

150

START TO FINISH GUIDE TO MOF EDITING
Hopefully you will find these diagrams helpful to you in your next game of “log tag”
when something goes bad during client hardware inventory.

Figure 14.1

/ sms_def.mof Modification to New Policy in Database \

(a4

Primary Site Server
and SMS Database

>

SMS\clifiles.src\hinv

sms_def.mof is modified and saved
sms_def.mof -

o

SMSiLogs\ dataldr.log inboxmgr.log smsdbmon.log policypv.log

SMS_Inventory Data_Loader

p compiles new sms_def.mof on Site
ataldr.log S —
erver

SMS_DEF.Mof change detected

Connected to SQL; waiting for Hinv action ID...
Done with wait for Hinv action ID.

Start of cimv2\sms-to-policy conversion

Resetting SMS_Report qualifier to FALSE on all classes and properties in cimv2\sms namespace
Running MOFCOMP on C:\SMS\inboxes\clifiles.src\hinv\sms_def.mof
MOF backed up to C:\SMS\data\hinvarchive\sms_def.mof.bak

End of cimv2\sms-to-policy conversion; returning 0x0

N .
Inbox Manager copies new
inboxmgr.log sms_def.mof to CAP(s)

Copying SMS\inboxes\clifiles.src\hinv\sms_def.mof to
CAP_LAB\clifiles_box\hinv\sms_def.mof, OK

& M~n - e . .
SMS_SQL Monitor notifies policy provider to
smsdbmon.log |update inventory policy in SQL

\\<CAP>\cap_<Site
Code>\clifiles.box\hinv

Created notification file C:\SMS\inboxes\policypv.box\{0000000. IAC

policypv.log

[SMS_Policy_Provider updates inventory policy
to reflect new version number.
|SMS_Policy_Evaluator evaluates new policy.

Successfully updated 1 settings policy.
Updating policy CCM_Policy_Policy3.PolicylID="{<Policy GUID>}",
@cySource:"SMSKSite Code>",PolicyVersion="<Policy Version>" “e.g.” 23.00 /

151

START TO FINISH GUIDE TO MOF EDITING

Figure 14.2
/ Machine Policy Retrieval & Evaluation Cycle \
Windows\
—— System32\CCM\
= Logs\
Advanced Client

Requests new policy assignments from
SMS site

policyagent.log

Requesting Machine policy assignments

Requesting policy from authority "SMS:LAB*
Raising event:

instance of CCM_PolicyAgent_AssignmentsRequested
instance of CCM_PolicyAgent_AssignmentsReceived
Received delta policy update with 1 assignments
Compiling policy

instance of CCM_PolicyAgent_PolicyDownloadStarted
instance of CCM_PolicyAgent_PolicyDownloadSucceeded
Revoking policy

instance of CCM_PolicyAgent_PolicyRuleRevoked
Deleting policy

DataTransferService creates a DTS
job to download new policy data via
HTTP

DTSJob created to download from <http://MP> to CCM\Temp\
DTSJob in state "DownloadingData”..."RetrievedData”.
DTSJob successfully completed download.

DTSJob in state "NotifiedComplete~.

DTS job has completed

DataTransfer
Service.log

PolicyEvaluator

pplies policy and updates WMI Policy Information
.log

Updating policy

Applying policy

instance of CCM_PolicyAgent_PolicyRuleApplied

Applied policy

instance of CCM_PolicyAgent_PolicyEvaluationComplete

Updates settings in \\<SystemName>\ROOT\ccm\Policy\Machine\RequestedConfig";
Updating settings in \\<SystemName>\root\ccm\policy\machine\actualconfig;
instance of CCM_PolicyAgent_SettingsEvaluationComplete

Updates inventory agent WMI

PolicyAgentPro .
namespace for new Inventory data items

vider.log

2 MINUTES LATER...
Indicating 2 settings change(s).
Indicating __InstanceModificationEvent settings change on object

InventoryDataltem.Datal temID="{<1D>}", ItemClass="Win32_UninterruptiblePowerSupply",Namespace=
“\\\\.\\root\\cimv2".

Indicating 1 settings change(s).-
Indicating __ InstanceModificationEvent settings change on object
InventoryDataItem.DataItemID:"{<ID>}",ItemCIass:"FiIeSystemFiIe",Namespace:"\\\\.\\root\tiif>/

\invagt".

152

START TO FINISH GUIDE TO MOF EDITING

Figure 14.3

Client Hardware Inventory Data Path to Database (Client to MP) 1 of 2

Windows\
| System32\CCM\
Advanced Client L

InventoryAgent component records inventory actions on client and sends
Inventoryagent.log report to MP in .xml format

Inventory: Collection Task completed in 45.966 seconds

Inventory: Temp Folder = C:\WINDOWS\system32\CCM\Inventory\Temp\
Inventory: Temp report = C:\WINDOWS\system32\CCM\Inventory\Temp\<temp file name>.xml
Inventory: Starting reporting task.

Inventory: Generating report for <Client Name> GUID:<Client GUID>
Inventory: Report Task completed in 1.212 seconds

Inventory: Report task done.

Inventory: Cleaning-up reports.

Inventory: Successfully sent report.

Inventory: Predefined action completed.

Inventory: Calling SetComplete

Inventory: SetComplete Returned

Inventory: ***xkkkkdkxs* End of message processing. ****kkdidddirt

MIFProvider component processes .mif files on client and adds their
mifprovider.log information to the inventory report before it is sent up

SMS_MIFGroup class ExecQueryAsync request:
select _ RELPATH, _ CLASS, _ PATH, _ RELPATH, ArchitectureName, ComponentName,
MIFGroupVerbatim, MIFClassVerbatim, MIFKeysVerbatim, AttributeKeyValues,
MIFAttributesVerbatim, MIFFile, MIFDirectory, MIFFileSize from SMS_MIFGroup
where MifFileSize <= 256000

Query parsed successfully... ready to scan for mifs.

Bad MIFs will be moved into C:\WINDOWS\system32\CCM\Inventory\noidmifs\badmifs
Parsing C:\WINDOWS\system32\CCM\Inventory\noidmifs\FlipFlop.MIF...
File C:\WINDOWS\system32\CCM\Inventory\noidmifs\FlipFlop.MIF syntax parsed.

Now verifying contents...
Number of groups in MIF C:\WINDOWS\system32\CCM\Inventory\noidmifs\FlipFlop.MIF: 1
Reporting MIF group "Flip Flop Information" (group index 0)...

ﬂ‘ SMS_CCM\Logs

<X
Management Point

— MPHinvEndpoint component gets the .xml from the
SMS\mp\outboxes\hinv.box\, determines the type of inventory (delta or full)

MP_Hinv.I S)
—ninv-leg and translates it into an .nhm file

Hinv Sax: loading C:\SMS\mp\outboxes\hinv.box\HinvAttachmentNI121D7T.xml
Delta report from client <Client Name>, action description = Hardware

Hinv Task: Translate report attachment to file "C:\SMS\mp\outboxes\hinv.box\
HXPOXPPM.NHM" returned 0

Enumerating mifs using search input C:\WINDOWS\system32\CCM\Inventory\noidmifs*.mif...

153

START TO FINISH GUIDE TO MOF EDITING

Figure 14.4

Client Hardware Inventory Data Path to Database (Site Server Logs) 2 of 2

—~ SMS\Logs

Primary Site Server
and SMS Database

SMS_MP_FILE_DISPATCH_MANAGER component checks the MP
outboxes for .nhm files periodically and moves them from the
mpfdmlog SMS\WMP\outboxes\hinv.box\ to the SMS\inboxes\inventry.box—also
renames the .nhm

Waiting for changes in MP outboxes, max wait = 1800 seconds
Moving 1 file(s) from C:\SMS\MP\outboxes\hinv.box\ to C:\SMS\inboxes\inventry.box\, one at a
time...

Moved file C:\SMS\MP\outboxes\hinv.box\HXPOXPPM.NHM to C:\SMS\inboxes\inventry.box\
sde8015k .NHM

Waiting for changes in MP outboxes, max wait = 1800 seconds

SMS_INVENTORY_PROCESSOR component processes the .nhm from
SMS\inboxes\inventry.box and creates the .mif in the
SMS\inboxes\dataldr.box directory

invproc.log

Waiting for MIF

Processing C:\SMS\inboxes\inventry.box\sde8015k.NHM

ScanCollectionPoints: processing *.NHM file for id = GUID:<GUID>, type = 1
Created MIF C:\SMS\inboxes\dataldr.box\slsrvc03.MIF

SMS_Inventory_Data_Loader component moves the .mif file from
SMS\inboxes\dataldr.box to SMS\inboxes\dataldr.box\process
dataldr.log directory and renames it (puts an X in front of the name) then processes
the .mif to update the database for the client.

Checking inbox for any MIFs to process...

>> Inbox has 1 files waiting to be processed.

>> Processing thread already has 0 files queued for processing.

>> Add 1 files to process directory ...

Moving MIF file C:\SMS\inboxes\dataldr.box\slsrvc03.MIF to C:\SMS\inboxes\dataldr.box\
process\slsrvc03.MIF

Started the machine MIF processing thread, thread ID = D48

Processing file slsrvc03.MIF

Renamed file to process from C:\SMS\inboxes\dataldr.box\process\slsrvc03.MIF to
C:\SMS\inboxes\dataldr.box\process\Xslsrvc03.MIF

Processing Inventory for Machine: <Client Name> Generated: 11/07/2005 11:15:56
File successfully parsed. Processing item (GUID = GUID:<GUID>)

Finished processing file Xslsrvc03.MIF

No more machine MIFs to be processed, terminating thread

Finished processing 1 MIFs

154

START TO FINISH GUIDE TO MOF EDITING

Hopefully, those diagrams will help you understand the path that the inventory
information follows to get from your client machines into the SQL database. This, of
course, assumes that you’ve done everything correct along the way to ensure valid data
is moving along that path.

Next, I'll go over some of the more common problems afflicting those brave enough
to wade the murky waters of MOF modification.

MOF Editing Errors

I copied and pasted stuff from someone else’s MOF, but the data isn’t showing
up in resource explorer or my database!

The most common question asked is, “Why isn’t it working?” Here are a few of the
most common mistakes made when you copy someone else’s MOF edits.

e If you are copying just a reporting class, verify that the last namespace change
was to 0/ \CIMT72\SMS. Remember that reporting classes must be in this
namespace to work.

e If you are copying a data class and its respective reporting class, verify that the
last namespace change before the data class was to 70/\CIM172, and then
switch to oA\ CIMT72\SMS prior to the tepotting class.

e Remember that even if you copy a data class into your MOF, it will not report
information unless a matching reporting class is created.

e Is the reporting class set to TRUE? Are the field reporting classes you want to
see set to TRUE?

e SMS 2.0? Do you have the registry providers registered in your MOF if you're
using them? Often administrators will copy in one registry provider and think
they have both the Registry Instance Provider and Registry Property Provider
in their MOF. When they copy in a class that’s using the ozher provider, their
class doesn’t report.

If you think your MOF is correct, the problem may not be your MOF, but the SMS
processes system themselves. If your MOF edits have passed MOFCOMP scrutiny,
before changing your MOF when the new class isn’t reporting, make sure you trace the
steps of the hardware inventory.

155

START TO FINISH GUIDE TO MOF EDITING

I put my new MOTF out on the site, and I have Windows 2000 machines hanging
onme. Grrr.

Did you add the Win32_QuickFixEngineering class to your MOF? If you did, this is
most likely the culprit. This error was fixed by Windows 2000 SP3. Don’t believe me?
Check out the below KB article.

KB279225 — WMI Win32 QuickFixEngineering Queries Hang Winmgmt Process.

I've created a new class to pull data from HRey_Current_User\Printers, but the
data isn't appearing in my database. I can see the information with

WBEMTEST. Where did it go?

Although you can see the data using WBEMTEST, data located in HKey_Current_User
cannot currently be extracted directly by SMS hardware inventory. When you’re
looking at the data with WBEMTEST, you are viewing WMI using your own user
account credentials. However, when hardware inventory is actually running; it is using
the local SMS account, or local system account, to perform the task. This means that
the system account is actually the current user, and therefore the HKCU registry
information will either not exist, or will be different than it is for the regularly logged-

Oon users.

The best way to obtain HKCU information is to use a sctipt to copy the information
from the HKCU hive into the HKIM hive in the registry. It then can be queried by
hardware inventory.

I've changed a class in my MO, but it continues to look the same in my
database! Everything looks to be working 100% and the data is propagating, but
it never changes no matter what I do to my class.

As silly as it may sound, it’s possible that you have a class with the same name later in
your MOF. Even if you’re changing the class that’s listed first in the MOF, the class
listed at the very bottom will always overwrite the first. Usually this occurs from
copying and pasting from other people’s MOF examples.

I'm able to edit my MOF and I think your book is the best thing since sliced
bread. However, I don’t have the time to write up my own MO edits. Where
can I find other people’s examples?

There are a few good places out there in cyberspace to pick up new MOF edits. SMS
Expert’s website (www.SMSexpert.com) is a good one. There, you can also pick up a
copy of the monster MOF.

156

START TO FINISH GUIDE TO MOF EDITING

The Monster MOF will probably have 99.9% of the edits you are looking for already
incorporated into one “Monster MOEF” as well as scripts that can be used to further
your inventory endeavors.

Another excellent source for all things SMS and for getting new MOF edits is
mylTforum (www.myITforum.com). On this website there are numerous articles,
examples, and forum posts with new MOF edits and ideas. Just copy, paste, test, and
deploy in your own environment.

MOFCOMP Errors

Once you believe that your MOF edit is ready for prime time, the next obvious thing
to do is to check the syntax with MOFCOMP.

MOFCOMP will alert you to the majority of MOF editing mistakes and these errors
are generally pretty intuitive, but sometimes you will receive a cryptic error response to
your compilation attempts. Here, I’ll try to decipher a few of them that always seem to
come up.

I'm getting the error that “An alias already exists” when I compile my MOF.

If you get this error, most likely it means that you’re trying to define a provider twice.
A provider only needs to be defined once per MOF, and therefore if you happen to
have it in your MOF twice, you'll need to search for the duplicate and eliminate it.

I'm getting the error “Class has Instances” when I compile my MOF.

This is a common error when you use the Registry Property Provider. Unlike the
Registry Instance Provider, the Property Provider defines its class first, and then
defines a separate instance or instances.

When you compile the MOF again, and the compiler sees even the most minor change
in the class, it will halt the compilation, stating that the class you’re trying to add already
has instances. Because an instance is based upon the class, it doesn’t want to let you
change the class while an instance exists. You can’t remove the foundation of a
building when the building is still on top of it.

The easiest method to correct this error is to use the #pragma deleteclass function just
prior to creating the class in your MOF. This will assure that no eatlier class or instance
will exist before you create the new class. See example below:

#pragma namespace("\\\\.\\root\\CIMV2")
#pragma deleteclass("TravelMode", NOFAIL)

[DYNPROPS]
class TravelMode

157

START TO FINISH GUIDE TO MOF EDITING

—nn,

[key] string ~ KeyName="";
uint32 TravelMode;
55

The #pragma deleteclass trick is a handy one. Whenever I'm testing a new MOF
edit, I always include this line above my class lines. That way as I’'m testing and
modifying the edit I always know I’'m starting with a clean slate. Once I begin
observing the information I am after appear I take that line out. This has saved
me a lot of time during my own experiences in MOF land.

SQL Database Errors

I've spent hours cleaning my database and my MOF, but for some reason these
classes keep appearing in my database and I don’t want them! Where are they

coming from?

Do you have MIF files floating around your hierarchy. You must remember to delete
those MIF files out of your client directories when deleting the class from SQL or you
will end up chasing your tail and deleting the SQL information over and over again.

If you’re getting classes in your database that you don’t want, open the table and get
the machine resource ID from that table. Locate that resource ID in your database and
find out what machine it belongs to. You can then map to the hard drive of that
machine and find out if the data is coming from the registry, the WMI, or from a MIF
in the noidmifs directory.

I am getting custom inventory data in the history table for my new class, but the
data table is only showing partial information! ‘What gives?

This is a £ey question ... OK, it’s a little late in the book for puns, but it really is a key
question. Incorrectly defining the key fields for your class has been the culprit in my
experience when this sort of situation occurs.

During the course of your reading this book it may have become apparent that I have a
special relationship with the Win32_PhysicalMemory class. This is because when I
decided it would be a good idea to inventory this information I didn’t propetly
understand what key fields were ... and I paid dearly. It took me about two months to
propetly inventory the physical RAM chips in systems because of this!

While attempting to inventory the memory chips, I would consistently see only one
individual memory chip in the inventory returned. That is, only one chip was
represented in my current history view in resource explorer and the data table in SQL.
Looking at the inventory history in resource explorer showed all four of the memory
chips from my test system. These chips were also represented in the SQL history

158

START TO FINISH GUIDE TO MOF EDITING

table. Because I had declared the key fields for the class impropetly in my MOF edit,
the inventory information in my current data table was being overwritten by each
successive memory chip found until I was left with just the last memory chip in the
system being stored in the current inventory table. So when I looked in resource
explorer for the current inventory information, I was only seeing one lonely memory
chip where I should have seen four—like I did in the history table.

After declaring a key field in your MOF edit, the first time a client runs hardware
inventory it will add those new tables, with their corresponding key fields, to the SQL
database. Those keys are not easily updated or changed. The best way to do rectify this
situation is to completely eradicate any information about those tables from SQL using
DELGRP or Site Sweeper and start over again with a proper MOF edit.

I am using DELGRP to delete a table for a class from my database that I know
exists, but I keep getting an error telling me that the class doesn'’t exist!

This is just DELGRP’s way of telling you that there is a space or some other
typographical mistake in your class name. If you add even one space to the name of
your class it will say the class does not exist. Go back and check your command line
and I'm willing to bet that there is something wrong with the way the class name was

typed.

Troubleshooting WMI

Don't always just assume that WMI is corrupt, right off the bat! There are a few things
to check before just pulling the plug on the system's WMI repository.

The Windows WMI service is always running. If you look in task manager for running
processes you’ll probably see one called winmgmt—unless you’re running Windows
XP or Server 2003. In this case, winmgmt is hiding within a svchost process.

Anyway, my point here is that you should always try stopping and restarting the
winmgmt service before continuing on to any further troubleshooting. The winmgmt
service is designed to start automatically when the computer system is started, so it
should be running. If for some reason, the service has stopped then it should
automatically restart the first time you run something that queries WMI such as
WBEMTEST.

To manually stop and restart the winmgmt service, open a command prompt and type
the following:

net stop winmgmt
net start winmgmt

159

START TO FINISH GUIDE TO MOF EDITING

Obviously, the net stop command stops the service and the net start command restarts
it for you. If this doesn’t help, try rebooting the system ... bet you've never heard that
before!

Still having issues? Are you sure you didn’t make a typo and try to inventory a non-
existent namespace? Is this an XP machine with the firewall turned on? Could there
possibly be DCOM permissions interfering with your inventory operations? DCOM
can cause access denied errors when WMI fails to connect to a remote system. This is
because WMI must establish a connection via DCOM to remote systems in order to
query the remote system’s WMI repository.

If the Windows firewall is enabled on your clients then some DCOM and firewall
configurations may be necessary to allow this traffic. Rather than hurt my head here,
I’ll just link you to the smart guys:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wmisdk/wmi/connecting_through windows firewall.asp

Of course, after all else fails, there will come a day that requires you to re-register all the
WMI components or to rebuild the WMI repository.

There are a few ways to do this. It used to be that the only way to fix a corrupted WMI
repository was to simply delete it and allow the system to rebuild it automatically for
you. This could still work I suppose, but it’s not very elegant. Below is a basic batch file
that would do the trick and variants of this can be found in countless places around the
Internet:

c:
cd %windir®%\system32\wbem\

MOFcomp cimwin32_MOF
MOFcomp cimwin32.mfl

net stop winmgmt

rmdir /s /q repository
rmdir /s /q Logs

mkdir Logs

net start winmgmt

Nowadays, Windows XP and Server 2003 SP1 make it easy for you to tackle this task
in a more refined manner. Built into these operating systems is a nifty set of commands
that allow you to check the WMI repository for corruption and repair it all in one. Be
warned, though, that you may lose some of those nifty WMI class additions this book
has been prompting you to create.

160

START TO FINISH GUIDE TO MOF EDITING

I’ll show you how to avoid this later in the chapter, but for now, here’s the trick for XP
and Server 2003 SP1—pay close attention, as these commands are case sensitive!

To check the WMI repository for errors on a Server 2003 SP1 system, run the

following command from command prompt:

rundl 132 wbemupgd, CheckWMISetup

Once you've run that command, quickly run to the wbem logs location and peer into
the setup.log file located at: Yowindiro\System32\ W ben\1ogs\Setup.log. Now, just read
through the log for any entries from today’s date. If you find none, then WMI is OK
and you should continue troubleshooting somewhere else. If, however, you see an
error message from today saying that it can’t find a namespace then, yes, your WMI
repository is indeed lifeless.

To perform immediate CPR on your WMI repository run this command:

rundl 132 wbemupgd, RepairWMISetup

This will create a brand new, stock WMI repository full of everything that Windows
came with—minus all those handy custom inventory classes you've spent the better
part of your life adding to the client! Keep reading, like I said. I'll show you how to
avoid that happening soon.

For Windows XP SP2, use the following command to check for corruption, and repair
if necessary:

rundl 132 wbemupgd, UpgradeRepository

For Windows XP SP1, the check and repair commands look like:

rundl 132 wbemupgd, CheckWMISetup

and ...

rundl 132 wbemupgd, RepairWMISetup

161

START TO FINISH GUIDE TO MOF EDITING

WM IDiag

It used to be common practice to just whack the WMI repository back to where it came
from and recreate the entire repository when you thought something fishy was going
on with a system’s WMI repository. This was often done without really knowing what
was going on or where the actual problem was. It was more of a cross your fingers
and hope that was the problem kind of thing. Of course, if you had compiled any
custom MOF edits you had to do it all over again to get the information back into WMI.
This by itself is enough to make you want to continue reading...

The WMI Diagnosis Utility, WMIDiag, is a VBScript script written by Alain Lissoir of the
WMI team at Microsoft. The WMI Diagnosis Utility takes the guess work out of WMI
troubleshooting. From checking all the WMI nhamespaces and services to looking for
possible corruption, WMIDiag does it all. With detailed reports and even suggestions
on how to fix the problems it encounters.

As of right now anyway, the tool can only be run locally by someone possessing local
administrator rights. This really isn’t such a bad limitation though because if you are
troubleshooting possible WMI corruption on a system then a script or remote WMI
connection probably wouldn’t work anyway.

For more information about WMIDiag make sure to read the ReadMe.doc file included
in the WMIDiag download located at the link below:

details.aspxPfamilyid=D7BA3CD6-18D1-

4D05—B1 1E-4C64192AE97D&displavlang=en

Some Tips and Other Silly MOF Tricks

There are a few tricks up any experienced MOF editor’s sleeve. Most administrators
have their own preferences for doing things and there are a lot of different ways to do
the same thing when it comes to inventory techniques. I'll show you a couple of tips
here that I feel are important and, hopefully, you will be able to benefit from them.

Create Custom Reminders

Changing the Class ID to help remember how you got the information into your
database is one I like. For example, if I've used a NOIDMIF to inventory something,
I'll do something like change the version number to MIF as in the example below:

SMSExpert | MyCoolClass | 1.0 changes to SMSExpert | MyCoolClass | MIF
Or, if I've used a script to populate the database I'll change the version number to:
SMSExpert | MyCoolClass | VBS

This helps when I decide I don’t want to inventory that particular “cool class”
anymore. I am given a quick reminder that I need to get those MIF files off the clients

162

START TO FINISH GUIDE TO MOF EDITING

to keep the class from returning from the dead or stop an advertisement running a
recurring script on clients to populate the database.

Be #Pragmatic

OK, remember when I kept promising to tell you how to keep your custom class
definitions from being deleted when you rebuild a client WMI repository? Well, this is
how you do it.

To avoid the problem of your custom WMI class additions being deleted when you
rebuild the WMI repository on a system just add —azzorecover to your MOFCOMP
compilation command:

MOFcomp —autorecover SMSinstalls. MOF-.

‘The —autorecover switch tells MOFCOMP to remember that it made this change to the
local system WMI and to add it to its “to-do” list when rebuilding the repository on the
system. The “to-do” list is stored in the registry at:

HKEY_LOCAL,_MACHINE\SOFTWARE\Microsg\WBEM\ CIMOM\ Auntorecover MOFs

Figure 14.5

Edit Multi-String

Yalue name:

Autorecover MOFs |

Walue data:

¥

| %

I OF. l’ Cancel]

One thing to take note of here: When you use the —autorecover switch, the MOF file you
are compiling must reside on the local machine somewhere. Somewhere that it is liable
to still be present if the repository is ever rebuilt.

Most examples you see of a . MOF being compiled with MOFCOMP usually say
C\Temp or something similar. If you are going to use the —antorecover switch, you
probably don’t want to store the file in a temporary directory or somewhere that a user
is going to inadvertently delete it. Just so you know, the majority of the default MOF
files set to autorecover are stored in the %W INDIR%\Syster:32\WBEM foldet.

163

START TO FINISH GUIDE TO MOF EDITING

Another fixation a lot of SMS admins have is attempting to keep their SMS_def.mof as
small as possible while being able to quickly find their own MOF edits. This is easily
done. Just use the #pragma include line at the bottom of your default MOF to include
and any custom “mini-MOFs” you've created. Either one #pragma include for one
“Monster MOY” or many #pragma include lines for many “mini MOF” files. I'll show
you what I mean.

Say you’ve created a custom data and reporting class for Symantec anti-virus
information that you don’t want cluttering up your otherwise stock SMS_def.mof. Just
create a “mini-MOF” including your custom AV inventory classes and name it
Symantec. MOF for simplicity’s sake and store it in the same directory as your
SMS_def.mof. Now, at the bottom of your SMS_def.mof add the following line:
#pragma include (“Symantec NIOF”)

Violal When your systems run hardware inventory, they will populate your Symantec
data tables just as if you had added those classes straight to the SMS_def.mof. Want to
keep a separate MOF with just your personal inventory modifications? No problem,
just use the #pragma include line at the bottom of the default SMS_def.mof to include
your very own personal “Monster MOE”. This way, if you ever get tired of
inventorying something you made, you can just comment out the include line in your
SMS_def.mof and hardware inventory will not even blink.

By using this method with many “mini-MOF’s” and multiple #pragma include lines, you
can easily get to the custom MOF modifications you have made, and just as easily stop
collecting, or modify the collected information resulting from their use. I'll talk about
this again here in a minute, but I wanted you to understand the #pragma include line first.

For more #pragma tips from Microsoft visit:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wmisdk/wmi/ pragma.as

Bypass MOFCOMP

Bypass WHAT you’re thinking? That’s not possible! OK, you’re right, it’s not
possible, but it can be accomplished easier than creating advertisements that run
command lines to manually compile custom data classes on your Advanced Clients.

Ever look at the examples for applying custom data classes to Advanced Clients and
see that you have to manually run MOFCOMP MyNewClass. MOF on all of them, and
then look at the site server itself and see that all you need to do there is drop in a new
SMS_def.mof and it’s automatically compiled? That didn’t seem fair to me, though, to
be fair I spend way too much time pondering things like this.

My point here is this: you can just copy a custom MOF to your Advanced Clients and
they will automatically compile the new MOF similarly to the old Legacy Clients!

164

START TO FINISH GUIDE TO MOF EDITING

Granted, you do have to copy them to a different location, but it’s still possible. This
may be a minor thing to some, but it excites me, so bear with me.

To automatically compile a custom MOYF on your Advanced Client systems, just copy
your customized MOF to theitr Yowindir’o\systens32\wben’\MOF directory. Give it a few
seconds and the MOF file will disappear. If you've done everything correctly, the new
MOF file will be found in the Yomwindir’o\ systens32\when\MOF\good directory. If for
some reason, the new MOF did not compile correctly it will be found in the
Yowindir/o\system32\whens\NMOF\ bad directory. Either way, you didn’t have to run a
complicated advertisement to run MOFCOMP manually.

Kind of a small victory over manual MOFCOMP compiling, but I think it’s a cool
trick nonetheless.

The Mini-Monster MOF

So I've kind of been hinting and lightly touching on a few things throughout this book
that I feel I need to wrap up in pretty bow for you here. Alright, ’'m not so good at
wrapping presents—ask my wife who has to stay up until 4am every Christmas Eve
while I'm fighting with a tricycle that I'm positive is missing three screws!

Anyway, this tip is how I like to make custom inventory modifications and hopefully
this process will benefit you as well.

The first thing to do is to find all those modifications you’ve made to your current
SMS_def.mof on the server and paste them into a new text file. You can actually
comment out or delete all those original custom additions once we’re finished here.
You may also want to create a comment section at the top of your new file to describe
any inventory changes you've made utilizing MIF files or scripts just to remind yourself
of how you’re getting that data. This will also enable you to maintain one authoritative
document for all your inventory modifications

Once you have created your very own ‘mini-monster mof” just save it with the “real”
SMS_def.mof on the site server(s). Hopefully by this point we all know that this
location is the SMS\invboxes\clifiles.sre\hinv shate.

Since you’re in that directory anyway, go ahead and open up the SMS_def.mof and add
the #pragma include line to the bottom. For instance, if your mini-monster mof was
named MyMiniMof.MOF then your oz/y addition to the SMS_def.mof would be the
below line:

H#pragma include (“MyMiniMof-MOE”)

Doesn’t get much easier than that right? Sure, it’s just as easy to paste those changes
into the SMS_def.mof, but as you pass the days as an SMS admin there will come a day
when it’s time to upgrade or apply a service pack to your SMS site. When you do so,

165

START TO FINISH GUIDE TO MOF EDITING

guess what gets automatically zapped? That’s right...the SMS_def.mof. If you have
forgotten to back it up you will have to go through a new MOF and re-create all of
your changes. When you upgrade your site using the mini-monster mof method all
you have to do is go into the new MOF and add that one line...I think it’s a handy

trick anyway.

So now that the SMS_def.mof is bringing your custom additions along for the ride it’s
time to notify your clients of the new changes. Create a program that copies your
mini-monster.mof to the location that the system’s reserve for important MOF files--
%WINDIRY\Systen32\WBEM. Next, have the progtam run the below command to
get the customizations entered into you client’s WMI repository and safeguard them
against deleted WMI repositories:

MOFOMP —autorecover MyNMiniMof.mof

SMS programs don’t run without advertisements right? Create an advertisement for
your program to run on a recurring basis. The recurring program helps to keep clients
updated when you change your custom additions as well as update any new systems
that become SMS clients in the future automatically.

Hopefully you’ll find this little tip as handy as I do, but if you don’t it’s fine to use
whatever method you find the most palatable for your situation.

More Tips and Tricks

For more cool tips and tricks, just visit the following websites. They will fill you in on
a lot of important information, and help you succeed in your endeavors to become the
best SMS admin out there.

SMS Expert Website
www.SMSexpert.com

Microsoft newsgroups
SMS Inventory Newsgroup at:
http://www.microsoft.com/technet/community/newsgroups/dgbrowser/en-

us/default. mspx?dg=microsoft.public.SMS.inventory

SMS Admin Newsgroup at:
http://www.microsoft.com/technet/community/newsgroups/dgbrowser/en-

us/default. mspx?dg=microsoft.public.SMS.admin

SMS Hardware Inventory FAQ
http://www.microsoft.com/technet/prodtechnol/SMS/SMS2003 / techfaq/ tfag05.ms

px

166

START TO FINISH GUIDE TO MOF EDITING

myl Tforum.com and the
www.myitforum.com

myITforum.com SMS email list
http:/ /lists.listleacue.com/mailman/listinfo/mssms

If you aren’t already subscribed to the SMS email list on myl'Tforum then take a
minute before you finish the book and go subscribe! You will be glad you did—trust me.

167

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

Common mistakes made when you copy and paste from someone else’s MOF:

>

If you are copying just a reporting class, verify that the last namespace
change was to o \CIMI"2\SMS. Remember that reporting classes must be
in this namespace to work.

If you are copying a data class and its respective reporting class, verify
that the last namespace change before the data class was to 70/ \CIM1/2, and
then switch to 700\ CIMT7"2\SMS ptiort to the reporting class.

Remember that even if you copy a data class into your MOF, it will not report
information unless a matching reporting class is created.

Is the reporting class set to TRUE? Are the fields you want to see set to
TRUE?

SMS 2.0? Do you have the registry providers registered in your MOF if
you're using them? Often administrators will copy in one registry provider and
think they have both the Registry Instance Provider and Registry Property
Provider in their MOF. When they copy in a class that’s using the other
provider, their class doesn’t report.

Troubleshooting WMI

>

Stop and restart the Windows Management Instrumentation (winmgmt)
service

Check XP firewall or DCOM permissions

With XP or Server 2003, you can try the wbemupgd commands to repair or
reinstall WMI

Go download WMIDiag]

168

START TO FINISH GUIDE TO MOF EDITING

When all else fails:
> Stop the WMI service
» Rename or delete the old WMI repository
» Restart the service

Changing the Class ID line to reflect the way that the data is collected (MIF, VBS,
etc.) may help remind you to delete mif files from clients or stop inventory scripts from
running to recreate the data tables you are going to delete.

To avoid custom WMI class additions being deleted when you rebuild the
WMI repository on a system just add —autorecover to your MOFCOMP
compilation command.

Using the #pragma deleteclass command ensures that you are starting off with a
clean WMI slate each time you test your MOF edit. Once you are confident that you
have what you need, just take that line out.

Adding a #pragma include line at the bottom of the default SMS_def.mof will cause
hardware inventory to include those additional MOF files as if they were a part of the
SMS_ def.mof file itself.

169

START TO FINISH GUIDE TO MOF EDITING

Chapter 15: MOF Editing in 15 Minutes
10 maeasure np to all that is dermanded of hins, a rmaan maust overestinaate his capacities.
—Johann Wolfgang von Goethe

the entire book to get to this chapter. Either way, this chapter is basically a

slimmed down version of the entire book for you fast trackers out there. If

you really did read the rest of the book before getting here, hopefully this
chapter will help some of the concepts and processes I've previously discussed sink in.

T his is the chapter you’ve all been waiting on! Yeah right, I know you skipped

My goal is to give you a basic familiarity with the SMS_def.mof and the processes
involved in modifying hardware inventory for custom information. I'll highlight the
important parts for you here, and direct you to more detailed information within the
book for more information where appropriate.

Introducing the SMS_def.mof

Managed Object Format (MOF) files are text files. The SMS_def.mof file is, therefore,
a text file. Of all the text files on your SMS server 'm going to go out on a limb and
say it’s probably the most important—at least as far as hardware inventory is
concerned anyway.

For Advanced Clients, the data zuside this file is what is used by the SMS site server to
generate a hardware inventory policy which the clients receive from their management
point. Legacy Clients retrieve the actual SMS_def.mof itself from their client access
point and use it directly to perform hardware inventories. From there, the hardware
inventory process queries WMI for the data to collect based on changes made by the
SMS_def.mof, and then queries a different namespace within WMI again to actually
collect that data. T'll get into WMI in a minute, but that’s the general idea at this point.

» Legacy Clients store a local copy of the SMS_def.mof file in their
%WINDIRY\ms\SMS\ clifiles\ hinv share

170

START TO FINISH GUIDE TO MOF EDITING

» Advanced Clients refrieve an inventory policy based on the SMS_def.mof stored on
the site server in the SMS\anboxes\clifiles.sre\hinv share.

Because the SMS_def.mof is really just a text file, you can open it with
NOTEPAD.EXE and view the data contained within it. WMI namespaces and
providers are declared at the top in the declarations section. Beneath that section the
actual inventory data and reporting classes are listed. These data and reporting classes
are modified or created in the local system WMI and used to perform the actual
hardware inventories.

So, from here you can see that the real meat and potatoes of the SMS_def.mof consists
of three important pieces: The providers (how to go about obtaining the information
from the system), the data classes (where to get the information you’re after), and the
reporting classes (the information to be collected during hardware inventory).

The SMS_def.mof is described in more detail in Chapter 2.

Windows Management Instrumentation

Understanding Windows Management Instrumentation (WMI) is eritical to
understanding hardware inventory and MOF modification. WMI is the Windows
implementation of the Web-Based Enterprise Management initiative or WBEM. WMI
is used to gain access to data stored in the Common Information Model Version 2
(CIMV?2) repository on a system. You will see this commonly referred to as the WMI
repository pretty much everywhere you look. For the most part, the data stored within
this repository is what we’re after when making hardware inventory modifications.

The WMI repository is organized into namespaces (classes and instances) that contain
more namespaces (subclasses and instances). Think of the WMI repository as a file
cabinet, or a computer’s file and folder structure. There are root folders which, in turn,
contain subfolders full of significant information.

The main namespaces you will use in MOF modification within the repository are the
100A\CIM172 and roof\ CIMT "2\ SMS namespaces as shown in Figure 15.1.

Figure 15.1

;;::I Think of the root as ... well the root, the CIMV?2 as the
,_—-—} CIMV2 repository containing all the significant information
about the system, or data classes, and the SMS folder as
containing everything you want SMS to report on, or reporting

,.JI classes.

SMS

CIMV2

171

START TO FINISH GUIDE TO MOF EDITING

Hardware inventory reads the data classes you’ve named in the SMS_def.mof from the
r00/\CIM 1”2 namespace and adds entries into the ro/\CIM1"2\SMS namespace for
reporting purposes.

That’s a pretty limited view of the CIMV2 repository, but those are the main
namespaces you will be dealing with during your MOF modifications. Sometimes the
data classes you want to inventory may be in a namespace not included as a root class
within CIMV2, but there are other sub classes that can be considered for inventorying
as well:

Figure 15.2

.-——'JI WMI Classes
WMI Sub
Data Classes

WMI Classes Classes
‘_'_'_.jl (__JI Win32_Fan
Win32 Classes Hardware Classes Win32_HeatPipe
Win32_Keyboard
,.--—-JI Win32_PointingDevice

Operating System

o

Installed Applications

Win32_Refrigeration

Win32_TemperatureProbe

,_..--J _ Instances, A.K.A.
Data we're after
Registry Classes Win32_PhysicalMemory Tag="Physical Memory 0"

Tag="Physical Memory 1"

Gt

System Classes

To access WMI programmatically and see what SMS hardware inventory sees, you can
use tools such as WBEMTEST (included with Windows) and the Microsoft Scripting
Guy’s Scriptomatic v2.

For more information about WMI and more tools to access it, go back to Chapter 4

Hardware Inventory Process

The hardware inventory process is relatively easy to understand once you have the core
concepts of the SMS_def.mof and WMI down. Just remember that compiling the
modified SMS_def.mof causes the local system WMI of your clients to change.
Inventory data you are after is copied from the data classes to the reporting classes and

172

START TO FINISH GUIDE TO MOF EDITING

sent in a report back up to the site server via the management point for Advanced
Clients and client access point for Legacy Clients.

Modifying the SMS_def.mof, located on the site server within the
SMS\inbosces\clifiles.sre\ hinv share sets off a chain reaction. Depending on the client
type, different events occur.

When you modify the SMS_def.mof the site server compiles it automatically. This
new data is then used to generate a hardware inventory policy which Advanced Clients
download from their management point—once an hour by default. Upon receiving
the new inventory policy, the Advanced Client evaluates it, and two minutes later
applies it. Applying the policy, in this case, means making changes to the local WMI
repository for newly added or deleted inventory classes and information.

To adjust the time between policy downloads, adjust the polling interval on the
Advertised Programs Client Agent Properties tab located in the SMS admin console under
Site Settings\ Client Agents\ Adyertised Programs Client Agent.

For Legacy Clients, the site server simply copies the newly edited SMS_def.mof to the
client access points. The Legacy Client takes note of when the SMS_def.mof is
modified and downloads it locally to the %W INDIRY0\ms\SMS\ clifiles\ hinv foldet.
Once there, it is automatically compiled and the new data entered into the local system
WMI repository.

For more information about the hardware inventory process, see Chapters 1 and 14.

Modifying the MOF

The following are the six methods we will be covering here quickly:

Reporting on an existing class

Inventorying registry keys using the Registry Property Provider
Inventorying registry keys using the Registry Instance Provider
Inventorying data using the View Provider

Static hardware inventory extensions.

SRR AR o R A I

Scripted hardware inventory extensions

173

START TO FINISH GUIDE TO MOF EDITING

Reporting on an Existing Data Class

Reporting on an existing data class is the easiest MOF modification there is. You just
simply need to add in a new reporting class to your existing SMS_def.mof file,
preferably at the end of it, so you can easily find it later!

You don’t have to spend a lot of time trying to memorize the reporting class syntax,
just find a reporting class already existing in the 700/\ CIM172\SMS namespace within
your MOF and copy and paste, and modify it to suit your needs.

Let’s say I want to inventory MyNewClass. Just copy and paste an existing reporting
class and change the class information to match MyNewClass. This includes the Group
Name, Class 1D, Class name, and reporting field types and names.

Here’s what this would look like step by step. Below is a reporting class already
existing in the SMS_def.mof. I've shortened it up for readability and highlighted the
areas you need to change in red:

#pragma namespace ("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report (FALSE),
SMS_Group_Name ("1394 Controller"),
SMS_Class_ID ("MICROSOFT|1394_CONTROLLER|1.0")]

class Win32_1394Controller : SMS_Class_Template

{

[SMS_Report (FALSE) 1]
uintl6 Availability;
[SMS_Report (FALSE)]
string Caption;

Now, just change the parts listed in red to reflect the new reporting class for
MyNewClass and set it to be inventoried by changing the SMS_Report lines from
FALSE to TRUE.

#pragma namespace ("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report (TRUE),
SMS_Group_Name ("MyNewClass"),
SMS_Class_ID ("MICROSOFT|MyNewClass|1.0")]

class MyNewClass : SMS_Class_Template

{
[SMS_Report (TRUE)]
string Fieldl;

174

START TO FINISH GUIDE TO MOF EDITING

[SMS_Report (TRUE)]
string Field2;

Because the MyNewClass is an existing data class already defined in WMI, all you had to
do was define a new reporting class under the 70\ CIM1"2\SMS namespace in the
SMS_def.mof to tell the hardware inventory to collect information about it.

Too easy, right? Let’s move on to a harder one.

For more information about reporting on an existing data class see Chapter 5.

Reqgistry Providers

The registry providers come in two flavors—the Registry Property Provider (RPP)
and the Registry Instance Provider (RIP). Sure, they sound similar, but they are
really quite different.

It takes most people a while for these differences to sink in. The best way I can think
of to differentiate them for you is this: the registry property provider basically reads
individual registry keys that you ask it to, and the registry instance provider goes after
sub keys of a specific registry key you've identified as the key field in your MOF edit.
In other words, it finds instances somewhere under a specific registry key that match
certain criteria. OK| clear as mud, right? I'll give you a quick demonstration here.

If you wanted to get information about the time zone standard name, you could query
the specific registry key using the Registry Property Provider (RPP):

Figure 15.3

File Edit Wiew Favorites Help

_L—l Setup |~ Mame Type Data :A]
=] stilimage 5] ctiveTimeBias REG_DWORD 00000010 (450} ’
- SystemRescurces ¥]Bias REG_DWORD 0%000001eD (450) |
= g ;:’;;:;j:;;‘;f;atmn [B¥]DaylightBias REG_DWORD DxFFFFFFce (4294967236) =
(3 Updats — DaylightName REG_5Z Pacific Daylight Time
& 0 UsbFlags DaylightStart REG_BINARY 00 00 04 00 01 00 02 00 00 00 00 00 00 00 00 00
@3 video | StandardBias REG_DWORD 000000000 {0) j
(53 Vit alDesvicaDrivars |ae i Standardhlame REG_5Z Pacific Standard Time = -vl
3 i] ||l o [

Iy ComputeriHKEY _LOCAL_MACHINENSYSTEMYCurrentControlSetiControli TimeZonelnformation

Your resulting MOF edit would look like so, with both the data and reporting classes:

175

START TO FINISH GUIDE TO MOF EDITING

//

//Start of Time Zone Information

//

#pragma namespace("\\\\.\\root\\CIMV2")

[DYNPROPS]

class TimeZonelnfo

{
[KEY] string KeyName ="";
string StandardName;

5

[DYNPROPS]
instance of TimeZonelnfo

{

KeyName="TimeZonelnformation";

[PropertyContext("locallHKEY_LOCAL_MACHINE\\SYSTEM\\CurrentCont
rolSet\\Control\\TimeZonelnformation|StandardName"),
Dynamic,Provider("RegPropProv")] StandardName;

k
#pragma namespace("\\\\.\\\ROOT\\CIMV2\\SMS")

[SMS_Report(TRUE),SMS_Group_Name("TimeZonelnfo"),SMS_Class_ID("MI
CROSOFT|TimeZonelnfo|1.0")]
class TimeZonelnfo : SMS_Class_Template
{

[SMS_Report(TRUE),KEY] string KeyName;

[SMS_Report(TRUE)] string StandardName;
I
//
//End of Time Zone Information

/1

Notice here that we’re using the RPP defined as RegPropProv in the MOF edit to find
the data stored in the specific registry key StandardName. 1t’s as basic as writing out
the registry path and placing a | right before the exact key you’re after.

HKEY_I.OCAL_MACHINE\\SYSTEM\\ CurrentControlS e\ Control\\ Tinze Zonelnfor
mation | StandardName

The RPP doesn’t care that there are other sub keys under TimeZonelnformation like
ActiveTimeBias, Bias, or DaylightBias. It’s only going to query the specific key after
the | symbol and so will only see StandardName.

176

START TO FINISH GUIDE TO MOF EDITING

Just remember this—the Registry Property Provider goes after a specific property of a
registry key.

The Registry Instance Provider (RIP) goes after registry information in a slightly
different manner. Once you give it the registry key to look under, it will query all the
Instances under there and report back to you—at least the ones you’ve told it to
anyway. For example, below is what the TimeZonelnfo MOF edit would look like
using the RIP:

//

//Start of Time Zone Information

{1

#pragma namespace("\\\\.\\root\\CIMVv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlS
et\\Control")
]

class TimeZonelnfo

{
[KEY] string TimeZonelnformation;
[PropertyContext("StandardName")] string StandardName;
[PropertyContext("DaylightName")] string DaylightName;

2
#pragma namespace("\\\\.\\\ROOT\\CIMV2\\SMS")

[SMS_Report(TRUE),
SMS_Group_Name("TimeZonelnfo"),
SMS_Class_ID("MICROSOFT|TimeZonelnfo|1.0")]
class TimeZonelnfo : SMS_Class_Template

{
[SMS_Report(TRUE),key] string TimeZonelnformation;
[SMS_Report(TRUE)] string StandardName;
[SMS_Report(TRUE)] string DaylightName;
5

Notice that in this case we’re using the RegProv provider. This is how the RIP is
defined in the top section of the default SMS 2003 SMS_def.mof. Also, notice that in
this example, the £¢y field is the actual registry key (in the left pane of regedit) which
has a sub key that contains the instances (or reporting field names) of data we’re after.
In this case, we’re just looking for StandardName and DaylightName keys (in the right
pane of regedit).

177

START TO FINISH GUIDE TO MOF EDITING

By the way, I could have named the key “Stanley” and it still would have returned all
the same information. The key field in this case is the name of the parent key to the
keys found with the StandardName and DaylightName value information somewhere
under the registry path given on the ClassContext line.

(L] Session Manager ||l mame Type Data A
-0 setup [E#]Bias REG_DWORD DX000001 0 (450)
& (1 Stilimage [B¥]DaylightEias REG_DWORD DFFFFFfce (4294967236)

[SystemResources

g~ " | ghthame REG_5Z Pacific Daylight Time
- g ;:;“é';‘;lesli;\;f;amn DaylightStart REG_BINARY 00 00 04 00 01 00 02 00 00 00 0000 00 00 00 00 |=
&3 Update || Bjstandardsias REG_DWORD 0x00000000 {0
(1 UshFlags I <tandardrame REG_5Z Pacific Standard Time Ll
@ video | @?Standardstart REG_RINARY 00 00 02 00 05 00 02 00 00 00 00 00 00 00 00 00 ||
18|l 1} | |2

[71 MirtualDeviceDrivers

Iy Computeri\HKEY _LOCAL_MACHINENSYSTEMYCurrentControlSetiControli TimeZonelnformation

For more information about the RPP and RIP check out Chapters 6 and 7.

The View Provider

The basic purpose of the view provider is to mirror information from one class
namespace to another. This was is a super important provider when using SMS 2.0
because SMS 2.0 clients could not inventory namespaces other than 70/ \CIM1"2 and
r0o\CIMT"2\SMS. So if you wanted to inventory Microsoft Internet Explorer version
information you would have to use a view provider to copy the information from the
1r00\\CIMV 2\ applications\mricrosoftIEl namespace into the r0/\CIM1/2 and
roo\CIM1"2\SMS namespaces.

To do so, you would have to peer into the MicrosoftlE,_Summary namespace using
the view provider:

#pragma namespace("\\\\-\\root\\CIMV2")

[Union,

ViewSources{"select * from MicrosoftlE_Summary"},
ViewSpaces{"\\\\-\\root\\CIMV2\\applications\\MicrosoftIE"}, Dynamic

Tolnstance, provider("MS_VIEW_INSTANCE_PROVIDER")]
class MicrosoftlE_Summary

{

[PropertySources{"Build"}] string Build;
[PropertySources{"IEAKInstall"}] string IEAKInstall;
[PropertySources{"CipherStrength"}] uint32 CipherStrength;
[PropertySources{"Version"}] string Version;
[PropertySources{"Name},Key] string Name;

178

START TO FINISH GUIDE TO MOF EDITING

I’ve highlighted some important parts above in red. Notice how the view provider is
called—it is pre-defined in the SMS 2003 SMS_def.mof so we don’t have to define it
here. Also, notice the select * statement in there? The view provider actually allows
you to perform some basic WQL filtering if you wanted to only inventory certain parts
of namespaces.

The reporting class looks just like any other reporting class in the SMS_def.mof:

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE), SMS_Group_Name("MSFTIE_Summary"),
SMS_Class_ID("SMSExpertMSFTIE_Summary|1.0")]

class MicrosoftlE_Summary : SMS_Class_Template

{

[SMS_Report(TRUE)] string Build;

[SMS_Report(TRUE)] string IEAKInstall;

[SMS_Report(TRUE)] uint32 CipherStrength;
[SMS_Report(TRUE)] string Version;
[SMS_Report(TRUE),Key] string Name;

2

Luckily, SMS 2003 allows you to simply use a namespace qualifier to “point” to the
other namespaces instead. To inventory this same information with SMS 2003 all you
have to do is use a namespace qualifier in a regular reporting class to clue SMS in on
the fact that the data class is really somewhere besides 7v0/\ CIM12:

[SMS_Report (TRUE), SMS_Group_Name ("MSFTIE_Summary"),
SMS_Class_ID ("SMSExpert|MSFTIE_SUMMARY|1.0"),
Namespace("\\\\\\\\.\\\\root\\\\CIMV2\\\\Applications\\\\MicrosoftIE")]

class MSFTIE_Summary : SMS_Class_Template

{
[SMS_Report (TRUE)] string Build;
[SMS_Report (TRUE)] string IEAKInstall;
[SMS_Report (TRUE)] uint32 CipherStrength;
[SMS_Report (TRUE)] string Version;
[SMS_Report (TRUE),Key] string Name;

2

For more information about view provider see Chapter 8.

Static Hardware Inventory Extensions

These extensions come in a few flavors. There is the basic static MOF, which is
basically a “mini-MOF” that contains both the class and instance information of that
class. This file must be compiled using MOFCOMP to get the information into the

179

START TO FINISH GUIDE TO MOF EDITING

local system WMI and the reporting class added to the main SMS_def.mof to get the
information added to the database. Every time you want to update that information
you will need to manually edit that static MOF file and re-compile it using
MOFCOMP. A quick example is shown below:

#pragma namespace ("\\\\.\\root\\CIMV2")
class Static_ MOF

{
[key]
string user;
string office;
string phone_number;
2
instance of Static_MOF
{
user = "John Smith";
office = "Building 4, Room 26",
phone_number = "(425) 707-9791";
2
instance of Static_MOF
{
user = "Denise Smith";
office = "Building 4, Room 26",
phone_number = "(425) 707-9790";
|

Notice the class (Static_ MOF) is declared at the top and the instances of the class are
listed afterwards. When compiled, this would add both the class and instance
information into WMI. Just add the following reporting class to your SMS_def.mof
and you’re all done.

#pragma namespace ("\\\\-\\root\\CIMV2\\SMS")
[SMS_Report (TRUE),
SMS_Group_Name ("Static Assetinfo MOF"),
SMS_Class_ID ("MICROSOFT]|Static_MOF|1.0")]
class Static_MOF : SMS_Class_Template
{
[SMS_Report(TRUE), key]
string user;
[SMS_Report(TRUE)]
string office;
[SMS_Report(TRUE)]
string phone_number;
2

180

START TO FINISH GUIDE TO MOF EDITING

Just remember, if any of this information ever changed, you would have to manually
edit that MOF file and recompile it locally to update the system information.

NOIDMIF and IDMIF files are another type of static inventory extension that need
to be updated manually or via a script. These follow a completely different format
than regular MOF files and are processed right along with the normal hardware
inventory process. To use these MIF files, you must enable NOIDMIF and IDMIF
collection from the hardware inventory properties in the SMS admin console. The
default size for MIF files is 250 KB, but you can enable larger files to be collected by
changing the value in the admin console.

Even though the hardware inventory properties say that you are enabling NOIDMIF
or IDMIF collection, SMS doesn’t really collect these files. They stored in specific
locations on clients and their data is read, and appended to, the normal hardware
inventory report sent up by the hardware inventory agents.

These are a little too complicated for me to throw into a chapter that is supposed to
take 15 minutes, but I'll give you a quick explanation of what they are here.

The main difference between NOIDMIF files and IDMIF files is that NOIDMIF files
are information relating to an existing client system—they have an ID, so none is
needed, thus the name NOIDMIF. IDMIF files contain data for non-client systems
or for objects that cannot become an SMS client. These files can pertain to stand-
alone systems for which you want some kind of inventory data, or other things, like
printers, people, etc.

Because the data is 7o associated with a known entity, the IDMIF must contain special
comments that provide a unique identifier to tell SMS exactly what this information is
referring to. That is what puts the ID in IDMIF.

For more information about static MOF extensions, NOIDMIF, and IDMIF files, see
Chapter 9.

Scripted Hardware Inventory Extensions

Sometimes there just isn’t an easy way to get the inventory information you are after.
This is where scripts come in. Scripts can be utilized to get the data that normal
hardware inventory cannot, and report the results in a format that SMS can recognize
and report on.

For example, say you want the mapped drive information for users. Since SMS
hardware inventory does not run under the user context, you won’t ever see the actual
drives that a user has mapped. In this situation, a script that runs when a user is logged

181

START TO FINISH GUIDE TO MOF EDITING

on, under their credentials, and documents the results into a .MIF, static MOF file, or
even straight to the client system’s WMI would be the way to go.

Bear in mind, scripted hardware inventory information is only as good as the last time
ou ran the script! You would need to set the script to run on a recurring basis to

y p p g

maintain current data.

For more information about scripted inventory extensions, see Chapter 10.

Comments

Before I move on here, there’s something I've been meaning to tell you. Notice the
comments in these MOF edit examples? Comments are your friends and should never
be left out of any good MOF edit. Using comments to remind yourself what you were
doing six months ago when you started inventorying something off the wall may be
helpful to you—or the SMS administrator who takes over after you move on to bigger
and better things somewhere else.

Comments can help remind you just how you got the data you’re reporting on as well.
It’s always good to remind yourself that you are getting some information via
NOIDMIF files or recurring script executions for instance.

To add comments to your MOF file, just place two /’s like so: // in front of your
comments on a single line:

// Hi, 'm a comment.

Or, to comment out an entire block of code versus deleting it and wanting it back later
just place /* in front of the beginning of the comment section and follow it with */ at
the end:

/* Hi,
Tama
comment */

There are three rules that I follow when creating comments:

1. At the end of the stock SMS_def.mof file, create a large block of comments to
signify the end of the Microsoft section, and the beginning of your own.
Inside this large block of comments, make a summary of all the classes you
added, how you added them (.VBS, MIF, etc...), why you did this, and the
date they were added.

2. Before each new class is defined, include a block of comments stating the
name of the class, what data it is to retrieve, any relevant KB articles, and any
modifications to the class with their respective dates.

182

START TO FINISH GUIDE TO MOF EDITING

3. Create a comment before any line that has been modified or altered from the
original, or if you want to remember why a line does, or does not, exist.

Although it sounds like a tremendous amount of work, when you go back to your
MOF two months after making modifications, you'll be very thankful that you made
the effort.

Compiling the MOF

Once you’ve modified the SMS_def.mof, the next logical step is for you to get those
changes into your client system’s WMI repositories. To do this you must compile the
MOF.

Whether the compilation occurs on the site server to generate an Advanced Client
policy or locally for Legacy Clients, a program called MOFCOMP (Managed Object
Format (MOF) compiler
http://msdn.microsoft.com/library/default.asp?utl=/library/en-
us/wmisdk/wmi/mofcomp.asp) is used. MOFCOMP can edit, delete, and insert
classes in the local WMI repository based upon what is defined in the MOF that has
been compiled. This occurs automatically whenever a new SMS_def.mof is introduced
at the site server level or on the Legacy Client.

MOFCOMP can also be run manually. To run MOFCOMP manually, just open a
command prompt and type in MOFCOMP and press enter. Using a .MOF file as a
parameter, the program will read through the MOV, line by line, top to bottom, and
perform whatever action is specified. MOFCOMP simply reads the file and follows the
instructions.

If the compiler runs into an error or a class that is not propetly structured, it will cease
the compilation process and display an error message with the line on which the error
occurred. Compilation will stop at that point with whatever changes are listed above
the error being made to the local WMI repository, and those below the error in the file
being ignored as the compilation will have ceased upon recognizing the error in the
file.

Before posting a new SMS_def.mof to your site server, it is a good idea to check it for
syntax errors with MOFCOMP. To do so, use the command with a —check parameter
as so: MOFcomp —check SMS_def.mof.

If there are any syntax errors in the MOF, then MOFCOMP will alert you to them at
this point, with no harm done to any actual WMI classes. Once your MOF is free of
syntax errors, you can drop the —check and use the command line MOFCOMP
SMS_def.mof to actually modify the WMI classes.

183

START TO FINISH GUIDE TO MOF EDITING

When hardware inventory runs, MOFCOMP runs just as if you had manually
requested it to run. The logs for the hardware inventory, including status messages
about the success or failure of the MOF compilation can be found below:

» For the SMS 2.0 client: Yomwindir’o\ms\SM.S\logs\ hinv.log

» For the SMS 2003 Advance client: Yomwindir’o\systens32\ccn\logs\ inventoryagent.log

For more information about MOFCOMP and compiling MOF files, see Chapters 3 and
11.

Distributing MOF Updates

Distributing MOF updates is a pretty simple process. Understanding #4y you’d need to
distribute MOF updates may be a little hard to understand at first though. Remember
that Legacy Clients actually download the SMS_def.mof whenever it is changed via
their client access point, and Advanced Clients receive a new inventory policy from
their management point, based upon the contents of the SMS_def.mof. Why then do
we need to distribute MOF updates?

Whenever a new data class is created that SMS doesn’t recognize by default, #be Advanced
Client has to manually compile a modjfied MO file to create the necessary class information. Since
Legacy Clients compile the modified SMS_def.mof file automatically, they get away
with no further action necessary.

The easiest way to accommodate this for Advanced Clients is through recurtring
advertisements created by standard SMS packages and programs to compile the
modified inventory information. Just create a package and program to run the manual
compilation command—~NMOFeomp yourMOF.MOF and schedule it to run on a
recurring basis to adjust the WMI accordingly for new client systems or updated MOF
files.

184

START TO FINISH GUIDE TO MOF EDITING

Chapter Summary

Managed Object Format (MOF) files are text files. The SMS_def.mof file is, therefore,
a text file, and the best method to access it is to use NOTEPAD.EXE.

For Advanced Clients, the data inside this file is what is used by the SMS site
server to generate a hardware inventory policy which the clients receive from their
management point. Legacy Clients retrieve the actual SMS_def.mof itself from
their client access point and use it directly to perform hardware inventories.

WMI namespaces and providers are declared at the top of the SMS_def.mof in
the declarations section. Beneath that section the actual inventory data and
reporting classes are listed. These data and reporting classes are modified or created
in the local system WMI by the compilation process and are used to perform the actual
hardware inventories.

WMI is the Microsoft implementation of the Web-Based Enterprise Management
initiative or WBEM. WMI is used to gain access to data stored in the Common
Information Model Version 2 (CIMV2) repository on a system.

The WMI repository is organized into namespaces (classes and instances) that contain
more namespaces (subclasses and instances).

The main namespaces you will use in MOF modification within the repository
are the root| CIMV2 and root| CIMV2| SMS namespaces. Hardware inventory
reads the data classes you've named in the SMS_def.mof from the 00\ CIM12
namespace and adds entties into the 700\ CIM172\SMS namespace for reporting

purposes.

To access WMI programmatically and see what SMS hardware inventory sees, you can
use tools such as WBEMTEST (included with Windows) and the Microsoft Scripting
Guy’s Scriptomatic v2.

When you modify the SMS_def.mof the site server compiles it automatically and sends
a copy of it to the client access point.

» The new data contained within the modified SMS_def.mof is used to generate
a hardware inventory policy which Advanced Clients download from their
management point. Upon receiving the new inventory policy, the Advanced
Client evaluates it, and two minutes later applies it.

185

START TO FINISH GUIDE TO MOF EDITING

» When the SMS_def.mof is modified on the site setrvet, the Legacy Client
downloads the actual SMS_def.mof file from its client access point to the
%WINDIRY\ms\SMS\ clifiles\hinv folder.. Once thete, it is automatically
compiled and the new data entered into the local system WMI repository.

This book describes six methods for modifying SMS hardware inventory. ..l won’t go
into them all here again, I mean, the chapter summary shouldn’t be longer than the
chapter right?!

Reporting on an existing class

Inventorying registry keys using the Registry Property Provider
Inventorying registry keys using the Registry Instance Provider

Inventorying data using the View Provider

EANEE S

Static hardware inventory extensions.

6. Scripted hardware inventory extensions
There are two ways to add comments to the SMS_def.mof. Using two /’s like so:
// and placing /* before your comment block and */ at the end of it.

Compiling a . MOF file enters the file’s information into the local system WMI
repository. MOF files are compiled using MOFCOMP.EXE.

The logs for the hardware inventory, including status messages about the success or
failure of the MOF compilation can be found:

» SMS 2.0 client: Yowindir%o\ms\SMS\ logs\ hinv.log

» SMS 2003 Advance client: Yowindir%o\systen:3 2\ con\ logs\ inventoryagent.log
You should create a package, program, and advertisement scheduled to run on
a recurring basis to deploy your custom MOF extensions to Advanced Clients to

ensure that they are propetly updated and contain current custom inventory
information.

186

	Start to Finish Guide to MOF Editing
	Chapter 1: Boot Camp
	What is WMI?
	How Does Hardware Inventory Work?
	What Are MOF Files?
	Chapter Summary

	Chapter 2: Introducing the SMS_def.mof
	The Menu to Hardware Inventory
	A Look Inside the SMS_def.mof
	Declarations
	Class Level Reporting Properties
	Field Level Reporting Properties
	Special Orders
	Chapter Summary

	Chapter 3: SMS_def.mof Syntax
	Compiling With MOFCOMP
	Comments
	Definitions
	Namespaces
	Data Classes
	Reporting Classes
	Instances
	Providers
	SMS_def.mof Structure Recap
	Basic MOF Modification Steps
	Chapter Summary

	Chapter 4: Introduction to WMI Manipulation
	The Basic Structure of WMI
	WMI Data Classes
	Key Fields
	Using Tools to Access WMI
	WBEMTEST
	CIM Studio
	Scriptomatic Version 2
	WMI Code Creator Version 1
	WMI Manipulation Methods
	Chapter Summary

	Chapter 5: Reporting on an Existing Class
	Structure of a Reporting Class
	Chapter Summary

	Chapter 6: Registry Property Provider
	When to Use the Registry Property Provider
	Chapter Summary

	Chapter 7: The Registry Instance Provider
	When to Use the Registry Instance Provider
	Chapter Summary

	Chapter 8: Using the View Provider
	Accessing Namespaces Other Than
root\CIMV2
	Using WQL Queries to Filter WMI Information
	Chapter Summary

	Chapter 9: Static Hardware Inventory Extensions
	Static MOF Files
	NOIDMIF and IDMIF Files in General
	NOIDMIF Files
	IDMIF Files
	Chapter Summary

	Chapter 10: Scripted Hardware Inventory Extensions
	Static File Scripted Extensions
	Scripts That Write Directly to WMI
	Chapter Summary

	Chapter 11: It’s Better To Test Now Than Be Testy Later
	Verify the MOF Syntax With MOFCOMP
	Compile the MOF on a Test Machine
	Use WBEMTEST to Check for the Class
	Initiate a Hardware Inventory
	Verify the Hardware Inventory Process
	Verify the Data on the SMS Site Server
	Chapter Summary

	Chapter 12: Pulling the Trigger
	Back Up the Original SMS_def.mof
	Replace the Original SMS_def.mof on the Site Server
	Update the Site Hierarchy
	SMS_def.mof Updates: Behind theScenes
	SMS_def.mof Back Ups: Good and Bad
	Using a Mini-MOF
	Chapter Summary

	Chapter 13: Cleaning up
	Clean up the SMS_def.mof on the Site Server
	Remove the Unnecessary WMI Classes From Your Clients
	Remove the Class Data From the Database
	DELGRP
	SMS Expert’s Site Sweeper Utility
	Chapter Summary

	Chapter 14: Troubleshooting and Tips
	Log Tag
	MOF Editing Errors
	MOFCOMP Errors
	SQL Database Errors
	Troubleshooting WMI
	WMIDiag
	Some Tips and Other Silly MOF Tricks
	Create Custom Reminders
	Be #Pragmatic
	Bypass MOFCOMP
	The Mini-Monster MOF
	More Tips and Tricks
	Chapter Summary

	Chapter 15: MOF Editing in 15 Minutes
	Introducing the SMS_def.mof
	Windows Management Instrumentation
	Hardware Inventory Process
	Modifying the MOF
	Reporting on an Existing Data Class
	Registry Providers
	The View Provider
	Static Hardware Inventory Extensions
	Scripted Hardware Inventory Extensions
	Comments
	Compiling the MOF
	Distributing MOF Updates
	Chapter Summary

